ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

Comparison between DeepESNs and gated
RNNs on multivariate time-series prediction

Claudio Gallicchio and Alessio Micheli and Luca Pedrelli

Department of Computer Science, University of Pisa
Largo Bruno Pontecorvo 3 - 56127 Pisa, Italy

Abstract. We propose an experimental comparison between Deep
Echo State Networks (DeepESNs) and gated Recurrent Neural Networks
(RNNs) on multivariate time-series prediction tasks. In particular, we
compare reservoir and fully-trained RNNs able to represent signals fea-
tured by multiple time-scales dynamics. The analysis is performed in terms
of efficiency and prediction accuracy on 4 polyphonic music tasks. Our re-
sults show that DeepESN is able to outperform ESN in terms of prediction
accuracy and efficiency. Whereas, between fully-trained approaches, Gated
Recurrent Units (GRU) outperforms Long Short-Term Memory (LSTM)
and simple RNN models in most cases. Overall, DeepESN turned out
to be extremely more efficient than others RNN approaches and the best
solution in terms of prediction accuracy on 3 out of 4 tasks.

1 Introduction

Recurrent Neural Networks (RNNs) are a class of neural networks suitable for
time-series processing. In particular, gated RNNs [1, 2], such as Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU), are fully-trained recurrent
models that implement adaptive gates able to address signals characterized by
multiple time-scales dynamics. Recently, within the Reservoir Computing (RC)
[3] framework, the Deep Echo State Network (DeepESN) model has been pro-
posed as extremely efficient way to design and training of deep neural networks
for temporal data, with the intrinsic ability to represent hierarchical and dis-
tributed temporal features [4, 5, 6].

In this paper, we investigate different approaches to RNN modeling (i.e.,
untrained stacked layers and fully-trained gated architectures), through an ex-
perimental comparison between RC and fully-trained RNNs on challenging real-
world prediction tasks characterized by multivariate time-series. In particular,
we perform a comparison between DeepESN, LSTM and GRU models on 4 poly-
phonic music tasks [7]. Since these datasets are characterized by sequences with
high-dimensionality and complex temporal sequences, these challenging tasks
are particularly suitable for RNNs evaluation [8]. Moreover, we consider ESN
and simple RNN (Simple Recurrent Network - SRN) as baseline approaches for
DeepESN and gated RNNs, respectively. The models are evaluated in terms of
predictive accuracy and computation efficiency.

In a context in which the model design is difficult, especially for fully-trained
RNNs, this paper would provide a first glimpse in the experimental comparison
between different state-of-the-art recurrent models on multivariate time-series
prediction tasks which still lacks in literature.

619

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

2 Deep Echo State Networks

DeepESNs [4] extend Echo State Network (ESN) [9] models to the deep learning
paradigm. Fig. 1 shows an example of a DeepESN architecture composed by a
hierarchy of Ny, reservoirs, coupled by a readout output layer.

In the following equations, u(t) € RN and x() () € RN% represent the ex-
ternal input and state of the l-th reservoir layer at step t, respectively. Omitting
bias terms for the ease of notation, and using leaking-rate reservoir units, the
state transition of the first recurrent layer is described as follows:

xO () = (1= aM)xD (¢ = 1) + aDEW,nu(t) + WWxD @ 1), (1)
while for each layer [> 1 the state computation is performed as follows:
xO() = (1 — a®)xD(t — 1) + aPEWOxED (1) + WO — 1)), (2)

In eq. 1 and 2, W;,, € RV2XNu represents the matrix of input weights, W(l) €
RNrXNr g the matrix of the recurrent weights of layer I, WO e RNrxNr g
the matrix that collects the inter-layer weights from layer I — 1 to layer I, a(® is
the leaky parameter at layer [and f is the activation function of recurrent units
implemented by a hyperbolic tangent (f = tanh). Finally, the (global) state
of the DeepESN is given by the concatenation of all the states encoded in the

recurrent layers of the architecture x(t) = (x(V(¢),...,x(Ne)(t)) € RNeNr,
1st layer 2nd layer NL-thLIIayer Wout
t L
11.()) x(D(t) 20 x2) (¢) WD) x (N2 () y.(t)
o 824 82 82 .
° :> ECV |:> @ |:> ane wms |:> E;E%;:} °
° W, w2 wiVe) °

Fig. 1: Hierarchical architecture of DeepESN.

The weights in matrices W;,, and {W(l)}{i %, are randomly initialized from a
uniform distribution and re-scaled such that |[Wiy, |2 = o and [[W® ||y = o re-
spectively, where ¢ is an input scaling parameter. Recurrent layers are initialized
in order to satisfy the necessary condition for the Echo State Property of Deep-

(1
ESNs [10]. Accordingly, values in {W()}f\i % are randomly initialized from uni-

form distribution and re-scaled such that max;<;<n, p ((1 —aNI + a(Z)VV(Z)) <

1, where p is the spectral radius of its matrix argument, i.e. the maximum among
its eigenvalues in modulus. The standard ESN case is obtained considering Deep-
ESN with 1 single layer, i.e. when Np = 1.

The output of the network at time-step ¢ is computed by the readout as a lin-
ear combination of the activation of reservoir units, as follows: y(t) = W,:x(¢),

620

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

where W, € RVY*XNLNr i5 the matrix of output weights. This combination
allows to differently weight the contributions of the multiple dynamics developed
in the network’s state. The training of the network is performed only on the
readout layer by means of direct numerical methods. Finally, as pre-training
technique we use the Intrinsic Plasticity (IP) adaptation for deep recurrent ar-
chitectures, particularly effective for DeepESN and ESN architectures [4, 6].

3 Experimental Comparison

In this section we present the results of the experimental comparison performed
between randomized and fully-trained RNNs. The approaches are assessed on
polyphonic music tasks defined in [7]. In particular, we consider the following
4 datasets!: Piano-midi.de, MuseData , JSBchorales and Nottingham. A poly-
phonic music task is defined as a next-step prediction on 88-, 82-, 52- and 58- di-
mensional sequences for Piano-midi.de, MuseData, JSBchorales and Nottingham
datasets, respectively. Each dimension of the input sequences corresponds to the
input and the output dimension of the models. The tasks consist of classifying
if the next note is played (value 1) or not (value 0) for each output dimension
with a threshold value of 0.5. As the datasets consist in high-dimensional time-
series characterized by heterogeneous sequences, sparse vector representations
and complex temporal dependencies involved at different time-scales, they are
considered challenging real-world benchmarks for RNNs [8].

Models’ performance is measured by using the expected frame-level accuracy
(ACC), commonly adopted as prediction accuracy in polyphonic music tasks [7],
and computed as follows:

ACC =3 TP/ (S TPW + Y P + Y FNW), @

where T is the total number of time-steps, while T P(t), F'P(t) and F'N(t) respectively
denote the numbers of true positive, false positive and false negative notes predicted
at time-step t.

Concerning DeepESN and ESN approaches, we considered reservoirs initialized
with 1% of connectivity. Moreover, we performed a model selection on the ma-
jor hyper-parameters considering spectral radius p and leaky integrator a values in
{0.1,0.3,0.5,0.7,0.9, 1.0}, and input scaling o values in {0.5,1.5,2.5}. Training of the
readout was performed through ridge regression [9, 3] with regularization coefficient A,
in {10_4, 103,102, 10_1}. Moreover, based on the results of the design analysis in
[6] on polyphonic music tasks, we set up DeepESN with N, = 30 layers composed by
Npr = 200 units, and ESN with Nz = 6000 recurrent units. We used an IP adaptation
configured as in [4, 6] with a standard deviation of o;p = 0.1.

For what regards fully trained RNNs, we used the Adam learning algorithm [11]
with a maximum of 2000 epochs. In order to regularize the learning process, we applied
dropout methods, a clipping gradient with a value of 5 and an early stopping with a

!Piano-midi.de (www.piano-midi.de); MuseData (www.musedata.org); JSBchorales
(chorales by J. S. Bach); Nottingham (ifdo.ca/~seymour/nottingham/nottingham.html).

621

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

Model [total recurrent units[free-parameters[test ACC [computation time
Piano-midi.de
DeepESN 6000 540088 33.33 (0.11) %|386
ESN 6000 540088 30.43 (0.06) % |748
SRN 652 540596 29.48 (0.35) % |3185
LSTM 316 539816 28.98 (2.93) % 2333
GRU 369 539566 31.38 (0.21) % |2821
MuseData
DeepESN 6000 504082 36.32 (0.06) %|789
ESN 6000 504082 35.95 (0.04) % |997
SRN 632 503786 34.02 (0.28) % |8825
LSTM 307 504176 34.71 (1.17) % |18274
GRU 358 503072 35.89 (0.17) % |18104
JSBchorales
DeepESN 6000 324052 30.82 (0.12) %|(83
ESN 6000 324052 29.14 (0.09) % |140
SRN 519 323908 29.68 (0.17) % |341
LSTM 254 325172 29.80 (0.38) % |532
GRU 295 323372 29.63 (0.64) % (230
Nottingham
DeepESN 6000 360058 69.43 (0.05) % (677
ESN 6000 360058 69.12 (0.08) % |1473
SRN 545 360848 65.89 (0.49) % |2252
LSTM 266 361286 70.00 (0.24) % |26175
GRU 309 359116 71.50 (0.77) % (11844

Table 1: Free-parameters and test ACC achieved by DeepESN, SRN, LSTM and
GRU. Computation time represents the seconds to complete training and test.

patience value of 30. Then, we performed a model selection considering learning rate
values in {107*,1073,1072,10™'} and dropout values in {0.1,0.2, 0.3,0.4,0.5}.

Since randomized and fully-trained RNNs implement different learning approaches,
it is difficult to set up a fair experimental comparison between them. However, we
faced these difficulties by considering a comparable number of free-parameters for all
the models. The number of recurrent units and free-parameters considered in the
models is shown in the second and third columns of Tab. 1. Each model is individually
selected on the validation sets through a grid search on hyper-parameters ranges. We
independently generated 5 guesses for each network hyper-parametrization (for random
initialization), and averaged the results over such guesses.

In accordance with the different characteristics of the considered training approaches
(direct methods for RC and iterative methods for fully-trained models) we preferred
the most efficient method in all the considered cases. Accordingly, we used a MAT-
LAB implementation for DeepESN and ESN models, and a Keras implementation for
fully-trained RNNs. We measured the time in seconds spent by models in training and
test procedures, performing experiments on a CPU “Intel Xeon E5, 1.80GHz, 16 cores”
in the case of RC approaches, and on a GPU “Tesla P100 PCle 16GB” in the case of
fully-trained RNNs, with the same aim to give the best resource to each of them.

Tab. 1 shows the number of recurrent units, the number of free-parameters, the
predictive accuracy and the computation time (in seconds) achieved by DeepESN,
ESN, SRN, LSTM and GRU models. For what regards the comparison between RC
approaches in terms of predictive performance, results indicate that DeepESN out-

622

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

performed ESN with an accuracy improvement of 2.90%, 0.37%, 1.68% and 0.31% on
Piano-midi.de, MuseData, JSBchorales and Nottingha tasks, respectively. Concerning
the comparison between fully-trained RNNs, GRU obtained a similar accuracy to SRN
and LSTM models on JSBchorales task and it outperformed them on Piano-midi.de,
MuseData and Nottingham tasks.

Further experiments confirm (though not fully reported here) that the number of
units used for the comparison resulted appropriate for each model in terms of rate
between performance and computational time. Indeed, the models are subject to a
rapid performance deterioration if we decrease the current number of units, and vice
versa, there is not a significant accuracy improving w.r.t. the computational cost if we
increase the number of units.

The efficiency assessments show that DeepESN requires about less that one order
of magnitude of computation time with respect to fully-trained RNNs, boosting the
already striking efficiency of standard ESN models. Moreover, while ESN benefits in
terms of efficiency only by exploiting the sparsity of reservoirs (with 1% of connectivity),
in the case of DeepESN the benefit is intrinsically due to the architectural constraints
involved by layering [6] (and are obtained also with fully-connected layers).

Overall, the DeepESN model outperformed all the other approaches on 3 out of 4
tasks, resulting extremely more efficient with respect to fully-trained RNNs.

4 Conclusions

In this paper, we performed an experimental comparison between radomized and fully-
trained RNNs on challenging real-world tasks characterized by multivariate time-series.
This kind of comparisons in complex temporal tasks, that is practically absent in
literature especially for what regards efficiency aspects, offered the opportunity to
assess efficient alternative models (ESN and DeepESN in particular) to typical RNN
approaches (LSTM and GRU). Moreover, we assessed also the effectiveness of layering
in deep recurrent architectures with a large number of layers (i.e., 30).

Concerning fully-trained RNNs, GRU outperformed the other gated RNNs on 3
out of 4 tasks and it was more efficient than LSTM in most cases. The effectiveness
of GRU approaches found in our experiments is in line with the literature that deals
with the design of adaptive gates in recurrent architectures.

For what regards randomized RNNs, the results show that DeepESN is able to out-
perform ESN in terms of prediction accuracy and efficiency on all tasks. Interestingly,
this highlights that the layering aspect allows us to improve the effectiveness of RC
approaches on multiple time-scales processing. Overall, the DeepESN model outper-
formed other approaches in terms of prediction accuracy on 3 out of 4 tasks. Finally,
DeepESN required much less time in computation time with respect to the others mod-
els resulting in an extremely efficient model able to compete with the state-of-the-art
on challenging time-series tasks.

More in general, it is interesting to highlight the gain in the prediction accuracy
showed by the multiple time-scales processing capability obtained by layering in deep
RC models and by using adaptive gates in fully-trained RNNs in comparison to the
respective baselines (ESN and SRN, respectively). Also, it is particularly interesting to
note the comparison between models with the capability to learn multiple time-scales
dynamics (LSTM and GRU) and models showing an intrinsic capability to develop
such kind of hierarchical temporal representations (DeepESN), which was completely
lacking in literature.

623

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

In addition to provide insights on such general issues, this paper would contribute
to show a practical way to efficiently approach the design of learning models in the
scenario of deep RNN, extending the set of tools available to the users for complex
time-series tasks. Indeed, the first empirical results provided in this paper seem to
indicate that some classes of models are sometimes uncritically adopted, i.e. despite
their cost, guided by the natural popularity due to their software availability (GRU,
LSTM). The same diffusion of software tools deserve more effort on the side of the
other models (DeepESN class), although the first instances are already available?.

References

[1] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation,
9(8):1735-1780, 1997.

[2] K. Cho, B. Van Merriénboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

[3] M. Lukosevicius and H. Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3(3):127-149, 2009.

[4] C. Gallicchio, A. Micheli, and L. Pedrelli. Deep reservoir computing: a critical experi-
mental analysis. Neurocomputing, 268:87-99, 2017.

[5] C. Gallicchio, A. Micheli, and L. Pedrelli. Hierarchical Temporal Representation in Linear
Reservoir Computing. In Neural Advances in Processing Nonlinear Dynamic Signals,
pages 119-129, Cham, 2019. Springer International Publishing. WIRN 2017.

[6] C. Gallicchio, A. Micheli, and L. Pedrelli. Design of deep echo state networks. Neural
Networks, 108:33 — 47, 2018.

[7] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent. Modeling temporal dependencies
in high-dimensional sequences: Application to polyphonic music generation and tran-
scription. arXiv preprint arXiv:1206.6392, 2012.

[8] Y. Bengio, N. Boulanger-Lewandowski, and R. Pascanu. Advances in optimizing recurrent
networks. In ICASSP 2013, pages 8624-8628. IEEE, 2013.

[9] H. Jaeger and H. Haas. Harnessing nonlinearity: Predicting chaotic systems and saving
energy in wireless communication. Science, 304(5667):78-80, 2004.

[10] C. Gallicchio and A. Micheli. Echo State Property of Deep Reservoir Computing Net-
works. Cognitive Computation, 9(3):337-350, 2017.

[11] D. Kinga and J. B. Adam. A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), volume 5, 2015.

2DeepESN implementations are made publicly available for download both in MATLAB (see
https://it.mathworks.com/matlabcentral/fileexchange/69402-deepesn) and in Python
(see https://github.com/lucapedrelli/DeepESN).

624

