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Abstract. Generative Adversarial Networks (GANs) have proven suc-
cessful for unsupervised image generation. Several works extended GANs
to image inpainting by conditioning the generation with parts of the im-
age one wants to reconstruct. However, these methods have limitations
in settings where only a small subset of the image pixels is known be-
forehand. In this paper, we study the effectiveness of conditioning GANs
by adding an explicit regularization term to enforce pixel-wise conditions
when very few pixel values are provided. In addition, we also investigate
the influence of this regularization term on the quality of the generated
images and the satisfaction of the conditions. Conducted experiments on
MNIST and FashionMNIST show evidence that this regularization term
allows for controlling the trade-off between quality of the generated images
and constraint satisfaction.

1 Introduction

In this work we consider an extreme setting of inpainting task: we assume that
only a few pixels, less than a percent of the considered image size, are known
and that these pixels are randomly scattered across the image (see Fig.1c). This
raises the challenge of how to take advantage of this scarce and unstructured
a priori information to generate high quality images. Besides methodological
novelty, a method that can tackle this problem would find applications to GAN-
based geostatistical simulation and inversion in the geosciences [1].

More specifically, this paper proposes an extension of the Conditional Gen-
erative Adversarial Network (CGAN) [2] framework to learn the distribution
of the training images given the constraints (the known pixels). To make the
generated images honoring the prescribed pixel values, we use a regularization
term measuring the distance between the real constraints and their generated
counterparts. Thereon we derive a learning scheme and analyze the influence of
the used regularization term on both the quality of the generated images and the
fulfillment of the constraints. By experimenting with a wide range of values for
the additional hyper-parameter introduced by the regularization term, we show
for the MNIST [3] and FashionMNIST [4] datasets that our approach is effec-
tive and allows for controlling the trade-off between the quality of the generated
samples and the satisfaction of the constraints.
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Fig. 1: Difference between regular inpainting (b) and the problem undertaken
in this work (c). The image obtained with our framework is shown in (d).

2 Related works

Generative Adversarial Networks [5] basically consist of an algorithm for train-
ing generative models in an unsupervised way. It relies on a game between a
generator, G, and a discriminator network, D, in which G learns to produce
new data with similar spatial characteristics/patterns as in the true data while
D learns to distinguish real examples from generated ones. Training GANs is
equivalent to finding a Nash equilibrium to the following mini-max game:

min
G

max
D

L(D,G) = E
x∼Pr

[
log(D(x))

]
+ E

z∼Pz

[
log(1−D(G(z)))

]
(1)

where Pz is a known distribution, usually normal or uniform, in which latent
variables are drawn, and Pr is the distribution of the real samples.

Yeh et al. [6] introduced an inpainting method which consists of taking a
pre-trained generator and exploring its latent space Z via gradient descent, to
find a latent vector, z, which induces an image close to the altered one while its
quality remains close to the real samples. This method was applied by Mosser
et al. [7] for 3D image completion with few constraints. However, the location
of the constraints in their approach was fixed, instead of randomly scattered.

Some other approaches rely on Conditional Generative Adversarial Net-
works (CGAN) [2]. This is a variant of GANs in which additional information, c,
is given to both the generator and the discriminator as an input (see Fig.2a).
The optimization problem becomes:

min
G

max
D

L(D,G) = E
x∼Pr
c̃∼Pc|x

[
log(D(x, c̃))

]
+ E

z∼Pz
c∼Pc

[
log(1−D(G(z, c), c))

]
(2)

In it seminal version [2], CGANs are used for class-conditioned image gen-
eration by giving the labels of the images to the networks. However, several
kind of conditioning data can be used even a full image to do image-to-image
translation [8] or image inpainting [9, 10].

3 Proposed approach

In this work, we retain the CGAN approach and add a reconstruction loss term
to further enforce the prescribed pixel values (usually less than a percent of the

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

26



D

G

x

z

GAN
cost

c

(a) CGAN

D

G

x

z

GAN
cost

c

 L2
cost

(b) Our approach

Fig. 2: Different GAN Setups

image). With this setup, the generator can be used to generate images from
constraints unseen during the training.

Given a learning set of images X ∈ [−1, 1]P×P drawn from an unknown dis-
tribution Pr and a sparse matrix C ∈ [−1, 1]P×P as the given constrained pixels,
the problem we focused on consists in finding a generative model G with input
z ∼ Pz, a random vector sampled from a known distribution, and constrained
pixel values C̃ ∈ [−1, 1]P×P that could generate an image satisfying the con-
straints while likely following the distribution Pr. Enforcing the constraints in
the CGAN framework leads to the following problem:

min
G

max
D

L(D,G)= E
X∼Pr

C̃∼PC|X

[
log(D(X, C̃))

]
+ E

z∼Pz
C∼PC

[
log(1−D(G(z, C), C))

]
(3)

s.c. C = M(C)�G(z, C))

where � is the Hadamard (or point-wise) product and M(C) is a corresponding
masking matrix. M(C) is a sparse matrix with entries equal to one at constrained
pixels location. As the equality constraint in 3 is hard to enforce during training,
we rather investigate a relaxed version of the problem. Indeed, we minimize the
L2 norm between the constrained pixels and the generated values (see Fig.2b).
The objective function, with λ ≥ 0 a regularization parameter, becomes:

L(D,G) = E
X∼Pr

C̃∼PC|X

[
log(D(X, C̃))

]
(4)

+ E
z∼Pz
C∼PC

[
log(1−D(G(z, C), C)) + λ ‖C −M(C)�G(z, C)‖22

]
.

4 Experiments

We experiment on the MNIST [3] and FashionMNIST [4] datasets, which consist
of images of size 28× 28px. We split the official training set into a new training
set (90%) and a validation set (10%). The official test set remains our test set.
A fifth of each so defined set is used to generated the matrix of constraints C
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Fig. 3: MSE (top) and FID (bottom) w.r.t. the regularization parameter λ;
Dataset MNIST (left), Fashion MNIST (right).

by randomly selecting 0.5% of the pixels. These images are then removed from
the training sets, to avoid correlation between real example presented to the
discriminator and constrained maps given to the generator.

A discriminator such as presented in DCGAN [11] has been chosen with
only two convolutional layers of 64 and 128 filters, Leaky ReLU activations and
batch normalization [12]. For the generator we retain the DCGAN architecture
with a fully-connected layer and two transposed convolutional layers of 128 and
64 filters with ReLU activations and batch normalization. An example of a
generated image with the corresponding constraints can be seen in figures 4c
and 4d.

(a) Original
Image

(b) Constraints (c) Generated
Image

(d) Satisfied
Consts.

Fig. 4: Generation of a sample during training. We first sample an image from a
training set (a) and we sample the constraints from it. Then our GAN generates
a sample (c). The constraints with squared error smaller than ε = 0.1 are deemed
satisfied and shown by green pixels in (d) while the red pixels are unsatisfied.
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Fig. 5: MSE w.r.t the FID. Left: MNIST; Right: Fashion MNIST.

We evaluate our models based on both the satisfaction of the constraints
and the visual quality of the generated samples. On one hand, we use the
mean squared error between the provided constrained values and the constrained
pixels in the generated image. On the other hand, evaluating the visual quality
of an image is not a trivial task [13]. However, the recently developed metric
referred to as Fréchet Inception Distance (FID) [14] seems to be a good metric
of performance. Since using the FID requires a pre-trained classifier, we trained
a simple convnet with MNIST/FashionMNIST labels as target. Lower layers of
the classifier are then used to produce high-level features needed by the distance:

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2), (5)

where µr, Σr, µg and Σg are the mean and the covariance matrices of extracted
features obtained on respectively the real and the generated data. To overcome
classical GANs instability, the networks are trained 10 times and the median of
the best scores on the test set at the best epoch are recorded. The epoch that
minimizes

√
FID2 +MSE on the validation set is considered as the best epoch.

Empirical evidences show that with a good choice of λ, the regularization
term helps the generator to learn enforcing the constraints (Fig.3), leading to
smaller MSEs than when using the CGAN approach only (λ = 0) and with minor
detrimental effects on the quality of the samples (Fig.3). For Fashion MNIST,
the regularization term even leads to a better image quality compared to the
quality provided by GAN and CGAN approaches. Fig. 5 illustrates that the
trade-off between image quality and the satisfaction of the constraints can be
controlled by appropriately setting the value of λ. Nevertheless, for small values
of λ the GAN fails to learn and only generates completely black samples. This
leads to the plateaus seen for both the MSE and the FID in Fig. 3.

5 Conclusion

In this paper, we investigate the effectiveness of adding a regularization term
to the conditioning of GANs to deal with cases where only a small subset of
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the image one wants to generate is known beforehand. Empirical evidences
illustrate that the proposed framework helps obtaining good image quality while
best fulfilling the constraints compared to classical GAN approaches. In future
work, we plan to extend this study to GAN conditioning in situations where no
trivial mapping exists between the conditions and the generated samples, such
as class-wise conditioning or more structured conditions.
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