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Abstract. After a two-class kernel Fisher Discriminant Analysis (KFDA)
has been trained on the full dataset, matrix inverse updates allow for the
direct calculation of out-of-sample predictions for different test sets. Here,
this approach is extended to the multi-class case by casting KFDA in an
Optimal Scoring framework. In simulations using 10-fold cross-validation
and permutation tests the approach is shown to be more than 1000x faster
than retraining the classifier in each fold. Direct out-of-sample predictions
can be useful on large datasets and in studies with many training-testing
iterations.

1 Introduction

For two-class kernel FDA (KFDA), a two-stage analytical approach allows for
the direct calculation of out-of-sample predictions without explicitly training
the model on the training data [1, 2]. In the first stage, a model is trained
on the whole dataset and in-sample predictions are calculated for all instances.
In the second stage, these predictions are updated to out-of-sample predictions
via multiplication with a submatrix of a projection matrix. The approach is
particularly efficient if the test sets are relatively small, e.g. in 10-fold cross-
validation. Additional computational benefits arise in permutation tests, since
the kernel matrix needs to be inverted only once irrespective of the number of
permutations.

Here, this approach is extended to the multi-class case by casting multi-class
FDA in a regression framework using its relationship to Canonical Correlation
Analysis (CCA) and Optimal Scoring [3]. The paper is structured as follows.
First, the direct calculation of out-of-sample predictions for two-class KFDA is
reviewed. Subsequently, multi-class FDA is rewritten as an Optimal Scoring
(OS) problem. Using OS, the direct calculation of out-of-sample predictions for
multi-class KFDA is derived and the complexity of the algorithm is determined.
Cross-validation and permutation testing experiments are conducted to compare
the direct approach to the standard approach (retraining the classifier on each
training fold).

2 Method

2.1 Direct out-of-sample predictions for two-class KFDA

For two classes, the direct approach can be developed by casting non-kernelised
FDA as a linear regression problem. Let X ∈ R

n×p be the predictor matrix (n

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

245



= number of instances; p = number of predictors), and y ∈ R
n be the class

labels. Let X̃ = [X,1n] be the predictor matrix augmented with a column of
ones corresponding to the bias term. Let H ∈ R

n×n be the regularized ’hat’
matrix that maps y onto the in-sample discriminant scores ŷin = Hy. It is
calculated as H = X̃(X̃�X̃+λIp+1)

−1X̃� = X̃X̃�(X̃X̃�+λIn)
−1 where λ ∈ R

is the regularization term and Ip+1 and In are identity matrices of size n or
(p + 1). The left formulation is more efficient if n > p + 1 and vice versa. Let
the subscript Te refer to the instances in the test set and t < n be its size. As
shown in [1, 2], the out-of-sample discriminant scores on the test set, denoted
as ŷout

Te ∈ R
t, can be calculated directly using

ŷout
Te = (I−HTe)

−1 (ŷin
Te −HTeyTe) (1)

where HTe is a matrix containing the rows and columns of H that correspond to
the test instances. This result directly generalizes to KFDA[1]. Let K ∈ R

n×n

be a kernel matrix. The equivalent of the ’hat’ matrix in KFDA is the matrix
G = K(K + λIn)

−1 and the out-of-sample discriminant scores on the test set
are given by ŷout

Te = (I−GTe)
−1 (ŷin

Te −GTeyTe).

2.2 Multi-class FDA as Optimal Scoring

In standard multi-class FDA with c classes, a new instance gets assigned to the
closest class centroid in the subspace spanned by the columns of W ∈ R

p×(c−1)

[3, 4]. W is the solution to the generalised eigenvalue problem Sb W = Sw WΛ,
where Λ is a diagonal matrix of eigenvalues and Sb and Sw are defined as Sb =∑

j ∈{1,2,...,c} nj (mj−m)(mj−m)� and Sw =
∑

j ∈{1,2,...,c}
∑

i∈Cj
(xi−mj)(xi−

mj)
�. Here, nj is the number of instances in class j, xi is the i-th instance,

mj is the j-th class mean, m is the sample mean, and Cj is the set of indices of
instances in class j. W is scaled such that W�SwW = I.

For more than two classes FDA is not equivalent to linear regression, but it
is equivalent to Optimal Scoring (OS) introduced next [3]. Let Y ∈ R

n×c be
the class indicator matrix whose (i,j)-th element is 1 if instance i belongs to
class j and 0 otherwise. Let β ∈ R

p+1 be the regression weights, θ ∈ R
c be the

vector of optimal scores, and Tr refer to the rows or columns corresponding to
the training set. Then the response vector of optimal scores on the training data
can be written as YTr θ, and the Optimal Scoring problem is given by

arg min
β,θ

||X̃Tr β −YTr θ||22 (Optimal Scoring) (2)

where β and θ are jointly optimised. The additional constraint n−1||YTr θ||2 = 1
avoids trivial solutions. [3] show that this optimisation problem can be broken
up into two successive steps.
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Step 1 (regression): A multivariate regression is performed on YTr, yielding

B̃ = arg min ||X̃Tr B − YTr||2F , where || · ||F is the Frobenius norm and B̃ =

[β1,β2, ...,βc]. Denote the regression scores for training and test sets as Ŷreg
Tr =

X̃Tr B̃ and Ŷreg
Te = X̃Te B̃. Unlike for two classes, an additional rotation/scaling

step is required to transform these regression scores into discriminant scores.
Step 2 (rotation and scaling): An eigendecomposition of (Ŷreg

Tr )
�YTr is per-

formed to find the optimal score vector. Let Θ ∈ R
c×(c−1) be the eigenvec-

tors, also called optimal scores, where the column corresponding to the triv-
ial eigenvalue 0 (if XTr is centered) or 1 (otherwise) has been removed. Let

α2
1, α

2
2, ..., α

2
c−1 be the corresponding eigenvalues. Let B be the submatrix of B̃

with the intercept omitted. Then the columns of BΘ point in the same direc-
tions as the discriminant weights obtained in multi-class FDA but their scaling
differs. To scale the weights, they are right-multiplied with the diagonal ma-

trix Dii =
√

α2
i (1− α2

i )/N . The normalisation
√
N

−1
does not appear in the

original definition of D ([3], p. 83) but is necessary because the within-class
scatter matrix has been used here whereas [3] use the covariance matrix. The
relationship between the multi-class FDA weights W and the Optimal Scoring
results is then given by

W = BΘD. (3)

2.3 Direct out-of-sample predictions for multi-class KFDA

In the Optimal Scoring formulation of FDA, the multivariate regression in step 1
can be skipped by adopting Eq. (1) and calculating the regression scores directly.
A similar derivation additionally yields the scores on the training data Ŷreg

Tr ,

Ŷreg
Te = (I−HTe)

−1 (Ŷin
Te −HTeYTe)

Ŷreg
Tr = Ŷin

Tr −HTr,Te Ŷ
reg
Te

(4)

where Ŷin = HY is the matrix of regression scores using all data as training
data and Ŷin

Tr and Ŷin
Te are its submatrices corresponding to training and test

set. Step 2 cannot be skipped, but it involves eigenanalysis of a c × c matrix
which is cheap if the number of classes c is small (e.g. < 10). The out-of-sample
discriminant scores are then obtained via Eq. (3) by projecting the test data
onto W

XTe W = XTe BΘD

⇔ Ŷout
Te = Ŷreg

Te ΘD
(5)

where Ŷout
Te ∈ R

t×(c−1) is the matrix of desired out-of-sample discriminant scores.

Eq. (5) illustrates that the scores are obtained by rotating Ŷreg
Te using Θ and

scaling it using D. Lastly, the equivalence between CCA and multi-class FDA
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also applies in the kernel case: H is simply replaced by its kernelised version G
[5]. These results are compiled in Algorithm 1.

Algorithm 1 Direct out-of-sample predictions for multi-class KFDA

Input: kernel ’hat’ matrix G, class indicator matrix Y
Ŷin ← GY
for all test sets Te do

(step 1)
Ŷreg

Te ← (I−GTe)
−1 (Ŷin

Te −GTeYTe)

Ŷreg
Tr ← Ŷin

Tr −GTr,Te Ŷ
reg
Te

(step 2)
(Θ,D)← eig((Ŷreg

Tr )
� YTr/NTr)

Ŷout
Te ← Ŷreg

Te ΘD
end for
Output: out-of-sample discriminant scores for different test sets {Ŷout

Te }

2.4 Computational complexity

The asymptotic computational complexity for training KFDA is quantified as
number of floating point operations. Let nTr and nTe be the number of training
and test instances, respectively. In the standard KFDA approach, the complexity
of calculating the kernel matrix is at least O(n2

Trp), depending on the kernel.
This is followed by an eigenvalue decomposition of the centered kernel matrix
O(n3

Tr). In cross-validation, this is repeated k times for an overall complexity of
O(kn2

Trp+ kn3
Tr).

In the direct approach, calculating and inverting the full kernel matrix costs
O(n2p+ n3). This is the most expensive step, but it is required only once.
Calculating the regression fits Ŷreg

Tr and Ŷreg
Te in every cross-validation iteration

costs O(kn3
Te + knTrn

2
Te). This is followed by the calculation and eigendecom-

position of (Ŷreg
Tr )

� YTr, O(kc2nTr + c3). Finally the discriminant scores are
calculated, O(kc2nTe). Assuming that c is fixed this yields an overall complex-
ity of O(n2p+ n3 + kn3

Te + knTrn
2
Te).

2.5 Experiments and results

Is the direct calculation out-of-sample scores faster than the standard approach?
To answer this question, experiments were conducted using multi-class FDA
with simulated data. Data was sampled from a multivariate normal distribu-
tion. Class centroids were randomly placed on the surface of a unit hypersphere.
A common covariance matrix was sampled from a Wishart distribution. Simu-
lations were performed for cross-validation and permutation tests.

Cross-validation. 10-fold cross-validation was used with data being split into
5 classes or 10 classes with equal class proportions. The number of instances
was either 100 or 1000, the number of features was varied from 10 to 1000 in
logarithmic steps.
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Fig. 1: Results of the simulations. On the y-axis, speed increase by the direct
approach is plotted on a logarithmic scale. Left plots: Speed increase for cross-
validation for 5 or 10 classes as a function of the number of features. Right plots:
Permutations.

Permutation tests. Here, cross-validation was repeated multiple times using
shuffled class labels. The number of features was fixed to 100 or 1000. The
number of permutations was limited to 10 or 100 to keep overall computation
time tractable. Since the projection matrix (G or H) is independent of the class
labels and only needs to be calculated once, large speed gains are expected.

For every combination of parameters, the simulation was repeated 20 times
for cross-validation and 10 times for the permutations. In every iteration, the
same random data and folds were used in both approaches to increase compa-
rability. As target measure, speed increase was used. It was defined as the
time required by the standard approach divided by the time required by the
direct approach. Analyses were performed in MATLAB (Natick, USA) using a
Thinkpad X1 Carbon with 16 GB of RAM and an Intel Core i7-6600U CPU @
2.60GHz × 4 processor. Results are depicted in Figure 1.

Cross-validation. An analysis of variance (ANOVA) revealed significant ef-
fects of n (F = 1023.97; p < .001), features (F = 38270.22; p < .001) but
not classes (p = .15). There was a significant features × n interaction (F =
125.74; p < .001) signifying a smaller effect of features for larger n.

Permutation tests. An ANOVA revealed significant effects of n (F = 366.2; p <
.001), permutations (F = 27.4; p < .001), and features (F = 16970.31; p < .001).
There was a significant n × features interaction (F = 24.93; p < .001) signifying
a smaller effect of features for larger n.

3 Discussion

A direct approach for calculating out-of-sample predictions in multi-class KFDA
has been presented. Simulations revealed a speed gain of the direct approach
compared to the standard approach (retraining a classifier on every fold). Cross-
validation was up to 1000x faster and permutation testing was up to 10,000x
faster.

Complexity. In the kernelised case, the standard approach requires an eigen-
value decomposition of a nTr×nTr matrix (nTr = size of training set). In contrast,
the direct calculation requires the inversion of a nTe × nTe matrix (nTe = size
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of test set). Additionally, an inversion of a n× n matrix (n = total size of data
set) is needed once, irrespective of the number of train/test folds. Hence, large
speed gains are possible if the test set is small relative to the training set, e.g.
in k-fold cross-validation with k ≥ 5.

Permutation tests. A particularly appealing application is permutation tests,
a popular non-parametric statistical tool [6, 7]. The computationally most ex-
pensive part of the direct approach is the inversion of the n × n kernel matrix.
However, since the kernel matrix is independent of the class labels, this inversion
only needs to be performed once for the first permutation. The result can then
be stored and re-used for all other permutations.

What if n is large? If the kernel matrix is too large to be stored in memory
or the inversion is too costly at O(n3), a simple remedy is to reduce the size
of the kernel matrix by subsampling or instance averaging in kernel space [8].
Alternatively, the Nyström method yields a low-rank approximation to the kernel
matrix Kr = LL� with L ∈ R

n×r, r � n. This allows for the kernel ’hat’
matrix to be approximated as Gr = λ−1 L [Ir − L�L (L�L + λIr)

−1] L� =:
λ−1 LRL� (compare Eq. (5) in [9]). The inversion required for calculating
Gr has a complexity of O(r3) and R ∈ R

r×r can be stored in memory for r
sufficiently small. The submatrices of Gr necessary for the approach developed
in this paper can be extracted efficiently by selecting the respective rows of L,
without ever requiring the full n× n matrix.
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