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Abstract. In this paper, we present a new method for solving the trans-
ductive inference problem whose objective is predicting the binary labels of
a subset of points of interest of an unknown decision function. We attempt
to learn a decision boundary using SVM. To obtain the maximal-margin
hypothesis over labeled and unlabeled samples, we employ an admissible
best-first search based on margin values. Empirical evidence suggests that
this globally optimal solution can obtain excellent results in the transduc-
tion problem. Due to the selection strategy used, the search algorithm
explores only a small fraction of unlabeled samples making it efficiently
applicable to median-sized datasets. We compare our results with the
results obtained from the TSVM demonstrating better results in margin
values.

1 Introduction

In many applications, the process of labeling samples on a dataset is very diffi-
cult, expensive or time-consuming, in some cases requiring the manual classifi-
cation by an expert. In these cases, there is usually a small set of labeled data
and a large number of unlabelled data. Semi-supervised learning emerges as a
solution to this type of situation. In this type of learning, some labeled data
(training set) is required for the construction of the model and, in addition, it
is also possible to use unlabeled data (working set) to build a model. With this
setting, it is expected that the acquired solution is better than would be possible
with only the labeled or unlabeled data.

Therefore, we can resume the use of semi-supervised learning in classification
problems as an attempt to improve the generalization capacity using simultane-
ously labeled and unlabeled data. Methods related to semi-supervised learning
usually employ the cluster assumption: the decision boundary should lie in low-
density regions [1]. Thus, it makes sense to use a large margin classifier, like the
Support Vector Machines (SVM), to find a maximum margin separator hyper-
plane on the training and working sets. In this way, the transductive support
vector machines [2] implements the cluster assumption directly by trying to find
a decision surface which is far away from the labeled and unlabeled samples. We
can say that transductive induction is a special case of semi-supervised learning
if the transductive hypothesis is used to infer unseen samples.

However, finding the exact transductive SVM optimal solution or the best
scheme of labels for the working set is a combinatorial NP-hard problem, becom-
ing computationally prohibitive for datasets with a large number of unlabeled
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samples. Given a binary classification problem and a working set of size n we
have 2n possible labeling schemes.

To overcome this problem, we propose a best-first search that efficiently
explores the space of all labeling schemes finding the maximal margin hypothesis.
The algorithm employs as evaluation function the margin values, which is a
monotone function since the margin values are monotonically decreasing when
new points are inserted in the problem space, and thereby the search algorithm
is admissible. We provide an extensive evaluation of the model performance
making a set of transductive inference experiments. We compare our results with
the results obtained from the Transductive Support Vector Machines (TSVM)
proposed in [3] demonstrating better results in margin values.

Following this brief introduction, we present in Section 2 some related work.
In Section 3 we describe preliminary concepts such as the binary classification
problem and the semi-supervised learning task. Section 4 presents the proposed
transduction algorithm and Section 5 reports the experiments and results. Fi-
nally, Section 6 presents the discussion and perspectives of future work.

2 Related work

In [4] the Semi-Supervised Support Vector Machine (S3VM) is presented. It
is shown that the SVM optimization problem can be modified to include the
working set and transformed into a mixed-integer programming problem, which
can be solved by integer programming methods. To make the problem easier
to solve, the authors attempt to minimize the L1 norm of the normal vector
defining a robust linear programming model with binary variables. This method
is practical only for solving small-sized problems.

The TSVM is presented in [3], which performs a local search by labeling the
entire working set and then performing changes of the given label while there is
an improvement on the objective function. Because it is not an exact method
and uses a form of local search, it is designed to handle large-sized datasets.

Finally, [5] presents a formulation of S3VM using the Branch-and-Bound
technique for obtaining the globally optimal solution attempting to learn the low-
density separator assumption. The method is very similar to our proposal, but
it differs in the two main processes: branching and bounding, and is appropriate
only for small-sized datasets. As a control strategy, this method uses a depth-
first search and selects to branch the unlabeled sample which results in a big
increase in the objective function. However, this requires the solution of several
SVM problems, one to each unlabeled sample. As will be seen in Section 4, we
implement alternatives strategies for these processes making the proposed model
more efficient and applicable in median-sized datasets.
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3 Preliminaries

3.1 Binary classification problem

Given a set of samples X of size m belonging to an input space Rd of dimension d
with each sample xi associated with a scalar yi ∈ Y , we can define the training
set of a classification problem as Z = {zi = (xi, yi) | i ∈ {1, . . . ,m}, xi ∈
X and yi ∈ Y }. In a binary classification problem yi = −1 or + 1. The main
goal in a classification problem is to find a function that generalizes from a set
of data used for training. We can define the hyperplane by its normal vector
w ∈ Rd, also called the weight vector, and a constant b ∈ R called bias. This
hyperplane has to separate the space such that {(xi, yi) ∈ Z | yi = +1} stays in
one-half space separated by it and {(xi, yi) ∈ Z | yi = −1} in the other.

For a linearly separable training set we want to find (w, b) subject to yi(w ·
xi) ≥ 0,∀(xi, yi) ∈ Z. One possible way to find this hyperplane is to use a
large margin classifier. This class of algorithm is capable of defining a distance
between the decision boundary and the samples. Its solution gives a hyperplane
with the maximum distance between it and the nearest samples.

3.2 Semi-supervised learning and transduction

Semi-supervised learning can be considered to be in between supervised and
unsupervised learning. The reason for this is because of its learning phase,
where not only is a training set Xl used, with all the samples already labeled,
but also a working set Xu of unlabeled samples. The goal of using both these
sets is to have a better classifier than would be possible using only one of them.

We can define the training set Xl for semi-supervised learning as Xl =
{(xi, yi) | i ∈ {1, . . . ,m}} and the working set as Xu = {xj | j ∈ {1, . . . , k}}.

A learning algorithm can have as a result either an inductive or transductive
function. More commonly we find algorithms with an inductive setting, which
means that after its learning phase it is capable of outputting a function f :
X → y defined in all space X . On the contrary, with a transductive setting,
the result would be a function f : Xu → yu that is only capable of labeling the
samples from the working set.

For new samples in an inductive setting, we can use the resulting function
to make predictions about the labels. In a transductive setting, it would be
necessary to retrain the model including the new samples to the working set. On
the other hand, the main idea of transductive learning follows the fact that if
there is a limit with a restrict amount of information, do not solve the particular
problem by solving a more general problem [2].

4 Transduction algorithm

4.1 State space and heuristic search

An efficient paradigm to deal with the combinatorial nature of the transduction
inference problem is the heuristic search, where each problem hypothesis is rep-
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resented by a state in the search state space. Among the main search methods,
we can cite the best-first search that employs as selection strategy the choice of
the best of all. However, this method requires an evaluation function in order
to measure the merit of the states and the condition that this function is mono-
tonically decreasing for solving maximization problems. Following the algorithm
proposed in [6] we develop the Best-First Branch-and-Bound Transductive Clas-
sifier (BFBB-TC) algorithm coupled with a hard margin linear SVM.

The BFBB-TC algorithm uses the margin values from an SVM as an eval-
uation function that is monotonically decreasing, satisfying the admissibility
property and ensuring the optimality of the search. Then, let γm+1 be the real
value of the maximal margin for a child state hypothesis and γm be the real
value of the maximal margin for its parent’s hypothesis. Thus, in a training set
with m + 1 samples we have γm+1 ≤ γm. The generated states, ranked by the
margin values, are stored in a priority queue, implemented as a heap structure.

4.2 Branching

The branching process can be explained as follows: take from the queue the
current solution of superior value margin. Next, introduce in training space the
unlabeled samples from the working set. If the new solution is feasible and does
not force the margin, then the optimal solution was found. Otherwise, we have
an unfeasible margin solution or error margin, and it is possible to update the
lower bound by computing the margin value of the sample that is closest to
the hyperplane. Notice that the feasible solution fulfills the margin constraint.
Then, this sample is selected to be labeled and generates two new states S+ and
S− which must be inserted, after evaluation, in the queue.

4.3 Evaluation and pruning

The branching process produces two new training sets Xl+ and Xl−, each one
has the previous training set plus the selected sample with one of the labels. We
run the SVM with Xl+ and Xl− to obtain the new solutions with margins γ+ and
γ−. The parent’s solution γ defines a new upper bound for this sample. If there
is no solution, then the margin value will be negative, and the respective state
must be eliminated and not inserted in the heap structure. Also, all the states
whose margin value is smaller than the lower bound must be eliminated. Since
we are always selecting the sample which is closer to the separating hyperplane,
when the margin value is reduced, then this sample is a potential candidate to
be a support vector in the final solution.

In this sense, the algorithm selects only a small fraction of the unlabeled
samples. The monotonicity property of the margin values is proved considering
the fact that the new maximal margin problem is more restricted than the par-
ent’s problem observing the fact that the addition of a new constraint reduces
the hypothesis space. Therefore, the new solution shall be equal to or less than
the parent’s solution. Every time the lower bound is updated the states in the
queue, with a margin value smaller than it, are removed from the search.
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5 Computational experiments and results

In the experiments, we made a comparison between the BFBB-TC and the
TSVM algorithm proposed in [3] using the SVMlight. The BFBB-TC uses as
classifier the SMO algorithm [7] implemented in Scikit-Learn library. For both
implementations, the hyper-parameters set were the regularization parameter
C, with a value of 10000, and the kernel chosen was linear. For each of the four
datasets selected from the benchmark created in [1], the experiments were made
with working sets (WS) of sizes 50, 100, 200 and 300, except the BCI dataset
due to its small size. These working sets were created from the original data,
making ten random splits of it to select the samples for the training set and
working set. The objective was to analyze the margin size and how much of
the working set was explored on the solution. To run the experiments the only
preprocessing made was to normalize the feature values in the range [-1, 1].

5.1 Results

Table 1 shows the mean values for the margin obtained with the ten executions
of the TSVM and the BFBB-TC. The column “WS” indicates the working set
size. The column “Not exp.” indicates what percentage of the working set was
not explored in the final solution of the BFBB-TC algorithm with the hyperplane
that correctly separates the classes while considering the training and working
sets. The column “%” indicates how much the BFBB-TC margin was greater
than the TSVM margin. The best results are highlighted in bold. Table 1 also
shows some information about the selected datasets.

Table 1: Comparison between BFBB-TC and TSVM.

Set Dim.
Samples

WS
TSVM BFBB-TC

Pos. Neg. Total Margin Margin % Not exp.

D
ig
it
1

241 734 766 1500

50 0.05249 ± 0.00259 0.05391 ± 0.00155 2.71% 91.60%
100 0.05265 ± 0.00345 0.05486 ± 0.00127 4.20% 92.90%
200 0.05559 ± 0.00224 0.05794 ± 0.00211 4.23% 91.55%
300 0.05723 ± 0.00497 0.06044 ± 0.00259 5.61% 91.27%

U
S
P
S

241 1200 300 1500

50 0.01272 ± 0.00047 0.01289 ± 0.00046 1.30% 98.20%
100 0.01502 ± 0.00113 0.01529 ± 0.00107 1.74% 96.70%
200 0.01946 ± 0.00133 0.01996 ± 0.00161 2.53% 95.10%
300 0.02452 ± 0.00237 0.02513 ± 0.00247 2.51% 93.23%

C
O
IL

2

241 750 750 1500

50 0.00798 ± 0.00052 0.00828 ± 0.00048 3.75% 95.00%
100 0.00832 ± 0.00057 0.00864 ± 0.00040 3.85% 93.20%
200 0.00980 ± 0.00051 0.01015 ± 0.00048 3.56% 91.85%
300 0.01092 ± 0.00089 0.01135 ± 0.00076 3.91% 91.37%

B
C
I

117 200 200 400
50 0.00627 ± 0.00076 0.00646 ± 0.00087 3.04% 90.80%
100 0.00837 ± 0.00134 0.00870 ± 0.00139 3.90% 87.60%
200 0.01645 ± 0.00387 0.01853 ± 0.00477 12.66% 84.95%

As shown in Table 1 the BFBB-TC algorithm achieved a larger margin in all
cases, as expected. Given that a larger margin is achieved it is expected that the
classifier will also have a better generalization. Although the TSVM is capable
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of finding a solution, even for larger datasets, it is not the optimal one.
A very important question related to this method is that only 1.8 to 15.05%

of the working set was really necessary to find the solution in the experiments.
With a working set of size n we would have 2n possible labeling schemes to
expand in total, but if we only need to expand at most 10% of that, we would
have 2k where k = 0.1 ·n. Taking this into consideration, it makes it possible to
solve problems with larger working sets and may also indicate which maximum
size of a working set could be used to solve a problem. Another interesting detail
about this is that you would not need to know previously which samples of your
working set are the most important, the algorithm will determine it accordingly
to your training and working sets data distribution.

6 Discussion

In this work, we proposed the BFBB-TC algorithm which combines a best-first
search strategy with the branch-and-bound technique and the SVM to find the
optimal labeling scheme that solves the transduction problem. The results, as
shown in Table 1, were very promising encouraging the continuity of the studies.

Considering the fact that the monotonicity property of the evaluation func-
tion is preserved in the feature space, as future work, we intend to develop the
dual implementation of the model allowing the possibility of making the nonlin-
ear transductive inference with the use of kernel functions. We also consider the
possibility of changing the SVM by a large margin classifier implemented in an
iterative setting. In this case, we can solve the optimization problem starting
from a previous solution [8], which could improve the efficiency of the method.
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