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Abstract. This work proposes a new approach to robotic grasping exploiting
conditional Wasserstein generative adversarial networks (WGANs), which output
promising grasp candidates from depth image inputs. In contrast to discriminative
models, the WGAN approach enables deliberative navigation in the set of feasible
grasps and thus allows a smooth integration with other motion planning tools. We
find that the training autonomously partitioned the space of feasible grasps into
several regions corresponding to different grasp types. Each region forms a smooth
grasp manifold with latent parameters corresponding to important grasp parameters
like approach direction.
We evaluate the model in simulation on the multi-fingered Shadow Robot hand,
comparing it a) to a classical grasp planner for primitive geometric object shapes
and b) to a state-of-the-art discriminative network model. The proposed genera-
tive model matches the grasp success rate of its trainer models and exhibits better
generalization.

1 Introduction

Robotic grasping with artificial humanoid hands is a challenging and important research
topic. Most recent approaches to robotic grasping involve a two-step procedure: First,
a set of candidate grasps is sampled. This can either be done based on a previously
extracted object representation [1, 2], heuristics [3] or just randomly around the ob-
ject position [4–6]. In a second step, the most promising grasp is chosen based on a
prediction of the expected grasp success.
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Fig. 1: Overview of the proposed WGAN
architecture.

In contrast to these approaches, the
present work focuses on the rather unex-
plored area [7] of using generative mod-
els to synthesize grasps. In particular, we
train a conditional generative adversarial
network (GAN), which directly outputs
promising grasp candidates from an input
depth image in an end-to-end manner.

The proposed approach is faster than
traditional discriminative approaches that
need to sample and rank hundreds of
grasps candidates. Furthermore, it pro-
vides a smooth grasp manifold suitable for deliberative search.

The proposed GAN comprises two subnetworks, the generator and the discriminator
net, which are trained in an adversarial fashion (see Figure 1). Both sub-networks
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receive the raw depth image v as input. While the discriminator additionally receives a
grasp candidate x / x̃ as input, the generator takes a low dimensional latent parameter
vector z to ensure a rich variability of grasps. The discriminator output w corresponds
to the probability of the grasp candidate being from the training data distribution.

Training a GAN can be interpreted as learning a mapping from a latent space (com-
prising the noise vectors z) to the space of successful grasps, conditioned on the input
depth image. As previous work on GANs suggest [8] a meaningful structure emerges
for the learned mapping: The mapping is usually locally linear, points that are close
in the latent space also map to points that are considered to be similar in the target
space. Such a mapping in the grasp domain could be exploited to deliberatively search
for promising grasps with different characteristics, e.g. power vs. precision grasps, or
approaching the object from different directions.

The contribution of this paper is two-fold: First, we present a novel application of
GANs to generate successful multi-fingered robotic grasps from depth images. Second,
we provide an in-depth analysis of the learned mapping from latent-space to grasp space
and highlight the emerged properties of this mapping.

2 Method

The goal of this work is to train a model that can sample successful grasps given a
depth image input. The depth image vi ∈ V depicting object i is a 32× 32 image.
Grasps are represented by an 11-dimensional vector: 3 dimensions encode the position
of the robot hand and 4 dimensions encode the orientation as a quaternion. The 4
remaining dimensions encode the desired grasp type using a one-hot vector. Namely,
we consider Two-Finger-Precision, Three-Finger-Precision, All-Finger-Precision, and
Power grasps. Each grasp type is associated with a fixed pre-grasp and grasp posture
that determine how the fingers of the robot hand will close. Let X be the space of all
grasps and Xi ⊂ X the set of grasps that are successful on object i. Grasp success for
this purpose is defined by whether the grasp is sufficient to lift the associated object in
a MuJoCo [9] simulation.

Given these definitions, we can precisely formulate the goal of this work: We
want to train a generative model that implements a mapping G : Z×V → X such that
G(z,vi) ∈ Xi ∀z ∈ Z ∀i, i.e. that generates successful grasps for any object i given its
depth image vi and a uniform noise vector z ∈ Z = [−1,1]n. Furthermore, we want a
model that can sample the full space of successful grasps i.e. ∀x ∈ Xi there is a z ∈ Z
such that x = G(z,vi).

The GAN is trained in the typical adversarial manner. The generator G tries to pro-
duce grasps that the discriminator cannot distinguish from successful grasps given as
training data thus approximating the distribution of successful grasps. The discrimina-
tor D works as adversary trying to distinguish between grasps from the generator and
grasps from the set of successful grasps used as training data.

The two neural networks are trained with a version of the standard WGAN objective
that was modified for conditional WGANs:

L = E
v∼Pv

(
E

x̃∈px̃(v)
[D(x̃,v)]− E

x∈px(v)
[D(x,v)]

)
(1)
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Fig. 2: Generator (left) and discriminator (right) model. All but the last layers use a
Leaky ReLu activation. The generator also uses Batch normalization. The part of the
generator output that represents the quaternion is normalized to have unit length and a
Softmax over the 4 neurons that represent the grasp type is computed.

Here Pv is the distribution over all depth images in the training set, px(v) is the distribu-
tion of successful grasps associated with an object depicted by depth image v and px̃(v)
is the distribution of generated grasps implicitly defined as x̃ = G(z,v),z ∼ p(z). The
generator tries to minimize the objective, whereas the discriminator tries to maximize it.
Similar to [10], we try to enforce the Lipschitz constraint by adding a gradient penalty
to the discriminator’s loss:

Lgrad = E
v∼Pv

(
E

x̂∈px̂(v)

[
(‖∇x̂D(x̂,v)‖2−1)2

])
(2)

Following [10], we implicitly define px̂(v) as sampling along straight lines between
pairs of grasps sampled from the distribution of successful grasps px(v) and the gener-
ator distribution px̃(v): x̂ = αx+(1−α)x̃ with α ∼ U(0,1). For training we used the
same hyperparameters and training scheme as suggested by [10] and trained for 500
epochs. The model architecture is described in Figure 2.

3 Training Data

We train and evaluate our model on two different 3D object datasets. One comprising
geometric primitives like boxes, spheres and cylinders and the other being the YCB
dataset [11], which contains complex everyday objects. To generate grasp candidates
we use two baseline methods.

3.1 Primitives

For the geometric primitives dataset, grasps were generated using a hand-engineered,
deterministic grasping pipeline [12] that uses constrained superquadric fitting. Exploit-
ing object symmetry, shape type, and object dimensions, a small set of grasp candidates
is generated, which are ranked according to a hand-crafted heuristic. Note, that for the
purpose of generating training data, we can skip the superquadrics fitting and use the
geometric object properties from ground-truth.
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Type Baseline Baseline with fitting GAN

Box 98.6 78.9 98.3
Cylinder 88.7 72.0 85.6
Sphere 93.1 85.1 87.6

Total 93.5 78.7 90.5

Table 1: Grasp success ratios for our GAN approach compared to the baseline.

The training set comprises 6608 boxes, spheres, and cylinders of various sizes. For
each object, the two highest-ranked grasps were considered for the training set. For each
object-grasp pair, 16 rotations uniformly distributed over [−π,π] around the z-axis are
included in the training dataset.

3.2 YCB Dataset

To generate grasp candidates for the YCB dataset, we employed the grasping pipeline
proposed by ten Pas et al. [4], which samples a large number of grasps and returns the 5
highest-ranked grasps using a deep convolutional network to predict grasp success from
an input point cloud. This pipeline yields grasps for a parallel-yaw gripper, which we
transform into grasps for our multi-fingered Shadow Robot hand using the All-Finger-
Precision prototype and applying a fixed relative transformation.

The YCB dataset [11] comprises 73 real-world objects of different categories. Sim-
ilar to the first dataset 8 uniformly distributed rotations around the z-axis of each object-
grasp pair are included. The dataset was randomly split into training and test set using
a ratio of 80:20.

4 Results & Discussion

4.1 Grasp Success Evaluation

4.1.1 Primitives

The trained model was tested on a set of 3000 objects with 1000 objects from each cate-
gory. We report grasping success as the percentage of how many of these objects could
be successfully lifted in simulation using grasps randomly sampled from the generator
network. We compare this to the grasping pipeline that was used to create the grasps for
the training data as a baseline. Because unlike our GAN the baseline directly accesses
the true object properties we also compare to the baseline with a preliminary primitive
fitting step to determine the object properties. The grasp success ratios show that the
grasps generated by the GAN are approximately on par in quality with the baseline and
outperform the baseline on similar conditions.
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Fig. 3: Mapping from latent space to grasp space for a square box (left) and an upright
cylinder (right).

4.1.2 YCB Dataset

On the YCB dataset, we compare our model against the discriminative approach pro-
posed by ten Pas et al. [4]. As this approach predicts 5 grasps we also sample 5 grasps
from our generator for a fair comparison. Our model achieves a best of 5 accuracy of
67.1% versus 68.75% accuracy for the discriminative approach. This suggests that our
model can adapt to more complex objects and closely match the performance of dis-
criminative approaches. Note that these accuracies are rather low. This is probably due
to the conversion from two finger grasps to grasps with the artificial humanoid hand.

4.2 Latent Space Analysis

To analyze the learned mapping from latent space to grasp space, we simulate and
render grasps for different inputs from the latent space for randomly selected primitive
objects of different categories. The mappings are visualized in Figure 3.

Note that these mappings automatically emerged in an unsupervised fashion during
training. In general, all mappings appear to have reoccurring characteristics that should
be highlighted:

• The mapping from latent space to grasp space is mostly locally linear: Positions
that are close in the latent space (and have the same sign) map to similar grasps.
For example, for cylindric objects, a small movement in the latent space corre-
sponds to a small change of the approach angle.

• Globally, the latent space partitions into several regions of semantically different
grasp type – usually along a zi = 0 axis. The space of successful grasps is not con-
tinuous and therefore also the mapping cannot be continuous and locally linear
everywhere. It facilitates searching in the latent space that these discontinuities
in the mapping correspond to a change of sign in the latent space.
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5 Conclusion

We present a conditional WGAN approach that is able to generate successful grasps
based on a depth image input for primitive objects and objects from the YCB dataset.
We compare the model against the grasp pipeline that was used for training data genera-
tion and show that it achieves the same grasp performance thus successfully mimicking
the hand-crafted grasp generation process. Furthermore, it outperforms this baseline if
the baseline uses primitive fitting instead of directly assessing the object’s properties.
On the YCB dataset, our model performs almost on par with a discriminative approach.

We further analyze the mapping from latent space to grasp space that was learned
by the generator and find that useful properties for grasp selection have emerged. The
mapping is locally linear and the latent space is usually ordered in a salient way for
mappings: Different regions of the latent space map to distinguishable kinds of grasps.
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