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Abstract. The performance of a Convolutional Neural Network (CNN)
depends on its hyperparameters, like the number of layers, kernel sizes, or
the learning rate for example. Especially in smaller networks and applica-
tions with limited computational resources, optimisation is key.
We present a fast and efficient approach for CNN architecture selection.
Taking into account time consumption, precision and robustness, we de-
velop a heuristic to quickly and reliably assess a network’s performance. In
combination with Bayesian optimisation (BO), to effectively cover the vast
parameter space, our contribution offers a plain and powerful architecture
search for this machine learning technique.

1 Introduction

Finding the optimal architecture for a Convolutional Neural Network (CNN) has
been a challenging task since the introduction of this machine learning technique.
The search for improvement of their performance has led to numerous optimisa-
tion approaches, with the state of the art constantly and rapidly evolving. While
the steady increase of available computational capacity in some respects enables
researchers to neglect this problem and solve complex learning tasks with ex-
tremely deep networks, individual optimisation remains important. Especially
with the application of CNNs to consumer products in various industrial sectors,
the need for small, specialised and highly optimised networks which are able to
run on mobile embedded hardware re-emerges.

Considering this challenge it stands to reason, that one would like to develop
a method to find the best network architecture for a given task. This method
should be fast enough to clearly outperform manual approaches in a matter
of time consumption. The faster decision support is provided, the more time
remains for fine tuning the outcome, since it is unlikely that final optimisation
through human supervision will become obsolete. Two aspects are particularly
important to such an architecture search: First a technique to estimate the
performance of a candidate architecture is required. Normal training is very time
consuming and therefore not recommended. This estimation should not only be
fast, but reliable in predicting the outcome which a normal training would have.
The second aspect regards the search algorithm itself. Even shallow networks
comprise hundreds up to thousands of hyper-parameters which renders the use
of an efficient way to cover the vast search space indispensable.
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2 Related Work

Architecture search and hyperparameter optimisation are two important topics
in the field of machine learning, leading to numerous publications. Much work
focuses on Bayesian optimisation (BO) [1] [2] [3], to address general tasks in
selecting hyperparameters. Other authors directly examine the problem of CNN
architecture search. We offer our contribution to the latter and combine it with
the former to obtain a comprehensive solution. While some papers introduce
architecture search methods which are carefully engineered, but often difficult
to use in practice [4] [5] [6] [7], we aim for a plain and effective method to provide
grounds for performance estimation and selection decision, that could be applied
to nearly any type of neural network.

Building on the work of [8], Saxe et al. [9] used random weights to perform
tests on the influence of different architectures on classification performance.
They employed convolutional and non-convolutional unsupervised feature learn-
ing and used a linear SVM for classification.

3 Methods

We propose a method for finding the best CNN architecture for a certain task.
This contribution is split into developing a heuristic method estimating the per-
formance of a candidate architecture without the need of full training and ap-
plying BO to narrow the search space.

To achieve fast performance estimation of a candidate architecture, the pro-
posed approach divides the network into two parts. One comprising the convolu-
tion layers used to extract features from the input data and the other consisting
of the fully connected classification part of the network (cf. Fig. 1). Since the
feature extraction part is more computationally expensive in the vast majority
of applications, the number of epochs optimising the weights of the convolutions
is restricted to two. These epochs are also the ones which provide the greatest
improvement in minimising the classification error. Training of the fully con-
nected layers is much less time consuming and can therefore be conducted for a
greater number of epochs (e.g. 30), the exact number depending on the given
task. To make the procedure robust and to provide an accurate assessment of
the performance of an architecture, every candidate is tested five times in that
way, with different initialisations of the network’s weights.

Fig. 1: Block diagram describing the proposed heuristic.
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While the proposed heuristic enables a fast and reliable performance estima-
tion of one candidate architecture, an efficient search method is still required
to handle the extensive parameter space. Since exhaustive approaches like grid
search are deemed impractical, as the number of combinations to evaluate grows
exponentially with the number of hyperparameters and the range of values they
can take, the use of a more sophisticated method is advisable. In general, even
random search was proven to not only outperform grid search in terms of time
consumption, but also provide better results [10].

We apply BO, a form of model-based optimisation, as described in [2] and
[3]. Its combination of random search sampling and improvement driven optimi-
sation facilitates a well-balanced trade-off between exploration and exploitation
of the search space and enables a very efficient architecture selection for CNNs.
We choose Latin hypercube sampling [11] as the random sampling method to
generate an initial design of the surrogate function based on Kriging models,
also known as Gaussian process regression. As infill criterion we select expected
improvement, which focuses the iterative selection on promising points, taking
into account not only the expected value, but the uncertainty.

4 Experiments and Results

To validate our claims, we conduct performance estimation and timing experi-
ments with the proposed heuristic and the combined architecture selection.

4.1 The Proposed Heuristic

To determine how well our proposed heuristic estimates the performance of a
CNN architecture, we conduct a series of experiments on a number of different
datasets for image classification. We select the well-known MNIST [12] and
USPS [13] datasets, which provide samples of handwritten digits 0 to 9. Further
the Latin part of the CoMNIST dataset [14] with handwritten letters A to Z. The
278×278 pixel source images were resized to 32×32 using bicubic interpolation.
Finally we use two of our private datasets; a set for traffic sign recognition
(TSR), comprising of 40 × 40 images of 19 different traffic signs and a class of
objects that are not signs, and one for adaptive headlight control (AHC), with
small 13×13 image patches of three classes, headlights, taillights and other light
sources. As additional input, the AHC dataset uses a vector of 77 hand crafted
features for each sample. Both private datasets provide images with grey and
red channel. Details on the datasets can be found in Table 1.

We define a number of individual candidate CNN architectures for each
dataset. For these experiments we use a strictly deterministic selection of candi-
date architectures, to assure reproducible and comparable results. Changeable
aspects of the structures are for example the number and kernel size of con-
volutions used, the number of channels per convolutional layer or neurons per
hidden layer, the number of fully-connected layers, the type of non-linearity ap-
plied between layers, as well as global hyperparameters such as learning rate and
momentum.
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MNIST CoMNIST USPS TSR AHC

Classes 10 26 10 20 3
Image Size 28× 28 32× 32 16× 16 40× 40 13× 13
Training Samples 60 000 9 918 10 000 265 774 92 159
Validation Samples 10 000 1 300 1 000 66 443 115 477
No. of Architectures 64 32 96 40 32
Corr. Mean-Best 0.785 0.679 0.828 0.852 0.875
Corr. Best-Best 0.789 0.597 0.742 0.843 0.878

Table 1: Datasets used for the experiments, including the resulting correlations
between the results obtained with our heuristic and the mean value (Corr. Mean-
Best) as well as the best value (Corr. Best-Best) of the normal training results.

In each case we train every architecture normally ten times, using different ran-
dom number generator seeds to initialise the weights and biases of the network,
to obtain a baseline by taking the mean validation error out of those ten runs.
The best value is also considered. For our proposed heuristic we train the fea-
ture extraction part of the network for two and the fully-connected part for 15
or 30 epochs, depending on whether we selected 50 or 100 epochs for the cor-
responding baseline training. We repeat this five times for every architecture
and compare the results by calculating the correlation coefficient between the
baseline and the best validation error obtained by our heuristic (cf. Tab. 1.)

Overall, we find a significant correlation between the performance estimation
of our heuristic approach and the baseline. The correlation by trend seems to
be a little bit higher, if the baseline is considered as the mean out of the normal
training runs. This should also be a better representation of the normal use
case, where one would train a candidate architecture not ten times, but once.

Figure 2 shows an exemplary result and correlation graph for the 64 archi-
tectures tested on MNIST. We would like to point out, how close the validation
results of our heuristic came to the validation error of the baseline qualitatively.
With accuracies close to only one percentage point below full training, this raises
the question of how much continuous training of all layers adds to the overall
performance of a CNN.

4.2 Time Measurements

While prediction accuracy is key to any heuristic approach, the time requirement
is the second most important aspect. The proposed heuristic was therefore com-
pared with normal training and the random weights approach of Saxe et al. [9].
Since we are aware, that the runtime of our heuristic depends on the relative size
of the convolutional and fully-connected part of a CNN, the arithmetic mean of
time measurements from all architectures in our experiments on the TSR dataset
were taken into account. Compared to the normal training baseline, on average
five evaluations of our heuristic only take 22.6% of the time needed for a single
normal training of the same architecture.
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Fig. 2: Graph of the experimental correlation of our proposed heuristic and
normal training on MNIST (left) and AHC (right).

The random weights approach takes 89.3% of this time, if ten initialisations per
architecture are considered, or 44.7% for five. Both of these numbers were used
in [9], with no preference stated. When we evaluate the time consumption on
TSR, we found, that even ten random weights initialisations could not reach the
performance of five initialisations of our heuristic (Corr. Mean-Best 0.769, Corr.
Best-Best 0.750). We further prove, that we are nearly five times as fast as a
single full training, while providing a basis for performance assessment, which is
much more prone to bad initialisation.

4.3 Architecture Selection

We combine our proposed heuristic with BO to utilise the synergy for fast and
reliable architecture search. We perform a large-scale experiment with the TSR
dataset and compare the use of our heuristic against normal training. Even if
we assume generous stepping for numeric parameters, a comparable grid search
would have approximately 134.9 million combinations to compute. For the base-
line with normal training, we select ninit = 50 random sampling points for the
initial design and niter = 100 iterations for the optimisation. Our heuristic
only takes a fifth to a fourth of the time, hence we choose ninit = 100 and
niter = 200, which provides broader parameter exploration while still being sig-
nificantly faster. Computation of the experiment on CPU took 4708 minutes
(≈ 78 hours) for the baseline and 2586 minutes (≈ 43 hours) with our heuristic.
In both cases we took the best parameter configuration obtained and compared
them with five full trainings each on TSR. We received a best validation error of
0.85% and a mean validation error of 0.90% for the baseline configuration and
respectively 0.63% and 0.84% for the architecture found with our heuristic.
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5 Conclusion

We have presented a technique to facilitate fast architecture selection for CNNs.
It comprises of a heuristic enabling fast, accurate and reliable performance esti-
mation of a candidate architecture, paired with the ability of BO to concentrate
the search on promising regions in the parameter space. This combination al-
lows for strong synergy. Through multiple initialisations of a single candidate
architecture the heuristic provides BO with results, which are more robust and
credible than the outcome of one single training. Thanks to this fact, it was
shown that BO combined with the heuristic was not only able to achieve results
comparable to those reached by BO and normal training, but even outperformed
this slower approach.
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