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Abstrat. In the wake of reent advanes in joint lustering and deep

learning, we introdue the Deep Embedded Self-Organizing Map, a model

that jointly learns representations and the ode vetors of a self-organizing

map. Our model is omposed of an autoenoder and a ustom SOM layer

that are optimized in a joint training proedure, motivated by the idea that

the SOM prior ould help learning SOM-friendly representations. We eval-

uate SOM-based models in terms of lustering quality and unsupervised

lustering auray, and study the bene�ts of joint training.

1 Introdution

After the suesses of neural networks in supervised learning, reent researh has

foused on learning representations for unsupervised tasks, and luster analysis

in partiular. Traditional algorithms tend to be ine�etive on high-dimensional

data where similarity metris beome meaningless. A solution is to �rst redue

dimensionality, then luster in a low-dimensional spae. This an be ahieved

with linear tehniques as Prinipal Component Analysis, or more expressive

models suh as deep autoenoders. In this two-stage approah, we (1) optimize

a pure information loss riterion between data points and their embeddings (gen-

erally via a reonstrution loss) (2) optimize a pure lustering riterion using a

lustering algorithm. In ontrast, deep lustering approahes [1�7℄ treat repre-

sentation learning and lustering as a joint task and learn a lustering-friendly

spae preserving prior knowledge of luster struture. See [8℄ for a review.

The self-organizing map (SOM) [9℄ ahieves simultaneous lustering and visu-

alization by projeting high-dimensional data onto a low-dimensional grid. The

grid is omposed of units, eah one assoiated with a prototype vetor from the

original data spae (also alled ode vetor). The learning algorithm enfores

a topology onstraint, so that neighboring map units orrespond to prototypes

that are lose in the original spae, aording to eulidean distane. We intro-

due the Deep Embedded SOM (DESOM), a model that jointly learns a SOM

and a latent spae that is more adapted to the SOM algorithm, aording to some

quality metri. Using the term oined by [4℄, we seek a SOM-friendly spae. We

represent the mappings between original and latent spae by an autoenoder

(AE). The prototypes lie in its intermediate spae and are reonstruted for

visualization and interpretation purposes. This approah resembles joint repre-

sentation learning and lustering, but with an additional topology onstraint,

and has lear advantages: (1) Autoenoders yield meaningful low-dimensional

representations that improve general performane of SOM. (2) Self-organization
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Fig. 1: DESOM arhiteture with an 8× 8 map.

and representation learning an be ahieved as a joint task, improving lassi�-

ation performane and utting down training time.

To the best of our knowledge, the only similar work is the SOM-VAE [10℄.

SOM-VAE add a topology onstraint to the VQ-VAE [11℄ loss funtion. However,

SOM-VAE uses a disrete latent spae, whereas in DESOM, the SOM is learned

in a ontinuous latent spae. Seond, they use a �xed window neighborhood

funtion, whereas we use a gaussian neighborhood with exponential radius deay.

Finally, DESOM is based on a deterministi AE instead of a VAE.

2 Proposition

The proposed arhiteture is illustrated in Fig. 1. The self-organizing map is

omposed of K units, orresponding to prototype vetors {mk}1≤k≤K . δ(·, ·) is
the topographi distane between two units on the map. We adopt a gaussian

neighborhood funtion KT (d) = e−d2/T 2

, depending on a temperature parameter

T , ontrolling the radius of the neighborhood. Temperature deays exponentially

at eah training iteration. The enoder and deoder parameters are respetively

noted We and Wd. zi = fWe
(xi) is the embedding of a data point xi in the

intermediate latent spae, and x̃i = gWd
(zi) is its reonstrution by the deoder.

We de�ne a loss funtion omposed of two terms:

L(We,Wd,m1, . . . ,mK , χ) = Lr(We,Wd)+γLsom(We,m1, . . . ,mK , χ) (1)

The �rst term Lr is a least squares reonstrution loss. The seond term

Lsom is the self-organizing map loss. It depends on the parameters {mk} and
the assignment funtion χ(z) = argmink||z−mk||

2
. It is de�ned as follows:
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Lsom =
∑

i

K∑

k=1

KT (δ(χ(fWe
(xi)), k)) ||fWe

(xi)−mk||
2

(2)

Note that when the temperature approahes zero, the SOM loss beomes

idential to a k-means loss, and our model thus onverges towards DCN [4℄ or

DKM [5℄ (at the end of their hyperparameter annealing):

lim
T→0
Lsom =

∑

i

||fWe
(xi)−mχ(fWe

(xi))||
2

(3)

The oe�ient γ trades o� between reonstrution loss and SOM loss. Our

joint training proedure �xes χ between eah optimization step, as it is non-

di�erentiable. Thus, we an de�ne onstant weights wi,k ≡ K
T (δ(χ(fWe

(xi)), k)).
Under this assumption, the partial derivatives of the loss funtion are easy to

derive. The path of the gradients is illustrated on Fig. 2.

input
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Fig. 2: Path of DESOM gradients.

3 Implementation

The ode for DESOM

1

was implemented in Keras and partly inspired by IDEC

2

.

The main novelty is a ustom SOM layer, parameterized by a K × L matrix

where K is the number of units and L is the latent dimensionality. The outputs

are the pairwise squared eulidean distanes between the input bath and the

prototypes: this allows to express the SOM loss as a weighted sum, using the

weight terms wi,k. The whole training proedure is detailed in algorithm 1.

4 Experiments

We onduted experiments on lassi�ation benhmark datasets desribed in

Tab. 1. SOM-based models are evaluated in two ways: (1) Quantitative as-

sessment of lustering quality using purity and NMI metris. We also evaluate

their lassifying power (without removing the topology onstraint) by perform-

ing k-means lustering on the resulting prototypes, and measure unsupervised

1

https://github.om/FlorentF9/DESOM

2

https://github.om/XifengGuo/IDEC
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Input: training set; SOM topology; Tmax; Tmin; iterations ; batchSize

Output: AE weights We, Wd; SOM ode vetors {mk}
Initialize AE (Glorot uniform) and SOM parameters (random samples) ;

for iter = 1, . . . , iterations do

T ← Tmax (Tmin/Tmax)
iter/iterations

;

Load next training bath ;

Predit SOM pairwise distanes on bath and ompute weights wi,k ;

Train DESOM on bath ;

end

Algorithm 1: DESOM training proedure

Dataset desription examples lasses dimension

MNIST [12℄ images (digits) 70000 10 784

Fashion-MNIST [13℄ images (lothing) 70000 10 784

REUTERS-10k [14℄ text (TF-IDF) 10000 4 2000

Table 1: Dataset statistis

lustering auray. (2) Qualitative assessment of the self-organization of the

resulting map, as our model must be topology-preserving.

4.1 Baselines and ompared models

We evaluate minisom, a standard SOM

3

; kerasom, our Keras implementation

of a SOM (DESOM with identity enoder); AE+minisom and AE+kerasom,

with AE and SOM trained separately; and �nally DESOM. We also inlude

SOM-VAE and k-means (keeping in mind that it laks self-organization).

4.2 Training parameters

All models are trained for 10000 iterations with a bath size of 256 using the

Adam optimizer [15℄. Initial and �nal temperatures are Tmax = 10.0 and Tmin =
0.1. The AE is symmetri with a [500, 500, 2000, 10] enoder arhiteture, and
the map has 8 × 8 units (to ompare with previous work). Empirially, we

�xed γ = 0.001 aross all experiments, without ross-validation to remain in

a fully unsupervised setting. Large values of γ lead to degenerate solutions

for the autoenoder, due to the SOM loss being easier to optimize than the

reonstrution loss. Moreover, the model is not very sensitive to the value of γ
as long as it stays in this order of magnitude. Pretraining is bene�ial in most

deep lustering approahes, either layer-wise [2,4℄ [6℄, RBM [1℄ or end-to-end [5℄.

However, initializing DESOM with pretrained AE weights does not lead to any

improvement, beause the SOM loss produes strong gradients at the beginning

of training that disturb enoder weights and anel out pretraining. Thus, we

use no pretraining.

3

https://github.om/JustGlowing/minisom
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MNIST Fashion-MNIST REUTERS-10k

Method pur nmi pur nmi pur nmi

k-means (k = 64) 0.842 0.571 0.716 0.512 0.892 0.427

minisom (8× 8) 0.637 0.430 0.646 0.494 0.690 0.230

kerasom (8× 8) 0.826 0.565 0.717 0.512 0.697 0.324

AE+minisom (8× 8) 0.871 0.616 0.734 0.531 0.690 0.235

AE+kerasom (8× 8) 0.939 0.661 0.764 0.539 0.777 0.306

SOM-VAE (8× 8) 0.868 0.595 0.739 0.520 - -

DESOM (8× 8) 0.939 0.657 0.752 0.538 0.849 0.381

Table 2: Purity and NMI (average on 10 runs). Best result and results with no

signi�ant di�erene (p-value > 0.05) in bold.

Method MNIST Fashion-MNIST REUTERS-10k

k-means (k = #lasses) 58.34 56.45 59.37

AE+kerasom (8× 8) + km 76.06 44.87 36.61

DESOM (8× 8) + km 76.11 56.02 57.18

Table 3: Unsupervised lustering auray (%) (average on 10 runs).

4.3 Quantitative and qualitative results

Clustering quality results (Tab. 2) on�rm the bene�ts of reduing dimensional-

ity with an AE. The overall best-performing models are AE+kerasom and DE-

SOM. Joint training does not onsistently improve purity and NMI on the �rst

two datasets but remains ompetitive, performs better on REUTERS-10k by a

fair margin and is faster to train. Interestingly, kerasom ahieves better than

minisom. The same disovery was made by [10℄, suggesting that Adam improves

SOM training. Finally, DESOM onsistently outperforms its diret ompetitor,

SOM-VAE. On the lassi�ation task (Tab. 3), DESOM onsistently ahieves

the best performane, demonstrating that joint training with a SOM prior has

enabled to learn a SOM-friendly representation for subsequent lassi�ation.

Visualizations of deoded DESOM prototypes (Fig. 3) display well-organized

regions orresponding to di�erent lasses and smooth transitions between them.

In addition, ode images learned by the standard SOM algorithm are blurred

beause of vetor averaging in original spae, whih is not the ase in DESOM.

5 Conlusion and future work

DESOM is the �rst approah that jointly trains an autoenoder and a SOM

in a ontinuous latent spae. The learned map is self-organized, ompetitive in

terms of lustering quality and requires no pretraining. On the lassi�ation

task, it outperforms similar methods. Future work will inlude a more thorough

investigation of hyperparameters, and extensions to the variational or adversarial

frameworks to learner riher representations and provide a generative model.
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Fig. 3: DESOM map of MNIST (left) and Fashion-MNIST (right).
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