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Abstra
t. In the wake of re
ent advan
es in joint 
lustering and deep

learning, we introdu
e the Deep Embedded Self-Organizing Map, a model

that jointly learns representations and the 
ode ve
tors of a self-organizing

map. Our model is 
omposed of an autoen
oder and a 
ustom SOM layer

that are optimized in a joint training pro
edure, motivated by the idea that

the SOM prior 
ould help learning SOM-friendly representations. We eval-

uate SOM-based models in terms of 
lustering quality and unsupervised


lustering a

ura
y, and study the bene�ts of joint training.

1 Introdu
tion

After the su

esses of neural networks in supervised learning, re
ent resear
h has

fo
used on learning representations for unsupervised tasks, and 
luster analysis

in parti
ular. Traditional algorithms tend to be ine�e
tive on high-dimensional

data where similarity metri
s be
ome meaningless. A solution is to �rst redu
e

dimensionality, then 
luster in a low-dimensional spa
e. This 
an be a
hieved

with linear te
hniques as Prin
ipal Component Analysis, or more expressive

models su
h as deep autoen
oders. In this two-stage approa
h, we (1) optimize

a pure information loss 
riterion between data points and their embeddings (gen-

erally via a re
onstru
tion loss) (2) optimize a pure 
lustering 
riterion using a


lustering algorithm. In 
ontrast, deep 
lustering approa
hes [1�7℄ treat repre-

sentation learning and 
lustering as a joint task and learn a 
lustering-friendly

spa
e preserving prior knowledge of 
luster stru
ture. See [8℄ for a review.

The self-organizing map (SOM) [9℄ a
hieves simultaneous 
lustering and visu-

alization by proje
ting high-dimensional data onto a low-dimensional grid. The

grid is 
omposed of units, ea
h one asso
iated with a prototype ve
tor from the

original data spa
e (also 
alled 
ode ve
tor). The learning algorithm enfor
es

a topology 
onstraint, so that neighboring map units 
orrespond to prototypes

that are 
lose in the original spa
e, a

ording to eu
lidean distan
e. We intro-

du
e the Deep Embedded SOM (DESOM), a model that jointly learns a SOM

and a latent spa
e that is more adapted to the SOM algorithm, a

ording to some

quality metri
. Using the term 
oined by [4℄, we seek a SOM-friendly spa
e. We

represent the mappings between original and latent spa
e by an autoen
oder

(AE). The prototypes lie in its intermediate spa
e and are re
onstru
ted for

visualization and interpretation purposes. This approa
h resembles joint repre-

sentation learning and 
lustering, but with an additional topology 
onstraint,

and has 
lear advantages: (1) Autoen
oders yield meaningful low-dimensional

representations that improve general performan
e of SOM. (2) Self-organization
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Fig. 1: DESOM ar
hite
ture with an 8× 8 map.

and representation learning 
an be a
hieved as a joint task, improving 
lassi�-


ation performan
e and 
utting down training time.

To the best of our knowledge, the only similar work is the SOM-VAE [10℄.

SOM-VAE add a topology 
onstraint to the VQ-VAE [11℄ loss fun
tion. However,

SOM-VAE uses a dis
rete latent spa
e, whereas in DESOM, the SOM is learned

in a 
ontinuous latent spa
e. Se
ond, they use a �xed window neighborhood

fun
tion, whereas we use a gaussian neighborhood with exponential radius de
ay.

Finally, DESOM is based on a deterministi
 AE instead of a VAE.

2 Proposition

The proposed ar
hite
ture is illustrated in Fig. 1. The self-organizing map is


omposed of K units, 
orresponding to prototype ve
tors {mk}1≤k≤K . δ(·, ·) is
the topographi
 distan
e between two units on the map. We adopt a gaussian

neighborhood fun
tion KT (d) = e−d2/T 2

, depending on a temperature parameter

T , 
ontrolling the radius of the neighborhood. Temperature de
ays exponentially

at ea
h training iteration. The en
oder and de
oder parameters are respe
tively

noted We and Wd. zi = fWe
(xi) is the embedding of a data point xi in the

intermediate latent spa
e, and x̃i = gWd
(zi) is its re
onstru
tion by the de
oder.

We de�ne a loss fun
tion 
omposed of two terms:

L(We,Wd,m1, . . . ,mK , χ) = Lr(We,Wd)+γLsom(We,m1, . . . ,mK , χ) (1)

The �rst term Lr is a least squares re
onstru
tion loss. The se
ond term

Lsom is the self-organizing map loss. It depends on the parameters {mk} and
the assignment fun
tion χ(z) = argmink||z−mk||

2
. It is de�ned as follows:
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Lsom =
∑

i

K∑

k=1

KT (δ(χ(fWe
(xi)), k)) ||fWe

(xi)−mk||
2

(2)

Note that when the temperature approa
hes zero, the SOM loss be
omes

identi
al to a k-means loss, and our model thus 
onverges towards DCN [4℄ or

DKM [5℄ (at the end of their hyperparameter annealing):

lim
T→0
Lsom =

∑

i

||fWe
(xi)−mχ(fWe

(xi))||
2

(3)

The 
oe�
ient γ trades o� between re
onstru
tion loss and SOM loss. Our

joint training pro
edure �xes χ between ea
h optimization step, as it is non-

di�erentiable. Thus, we 
an de�ne 
onstant weights wi,k ≡ K
T (δ(χ(fWe

(xi)), k)).
Under this assumption, the partial derivatives of the loss fun
tion are easy to

derive. The path of the gradients is illustrated on Fig. 2.

input
Encoder
We

Decoder
Wd

SOM
mk
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We

γ ∂Lsom
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Fig. 2: Path of DESOM gradients.

3 Implementation

The 
ode for DESOM

1

was implemented in Keras and partly inspired by IDEC

2

.

The main novelty is a 
ustom SOM layer, parameterized by a K × L matrix

where K is the number of units and L is the latent dimensionality. The outputs

are the pairwise squared eu
lidean distan
es between the input bat
h and the

prototypes: this allows to express the SOM loss as a weighted sum, using the

weight terms wi,k. The whole training pro
edure is detailed in algorithm 1.

4 Experiments

We 
ondu
ted experiments on 
lassi�
ation ben
hmark datasets des
ribed in

Tab. 1. SOM-based models are evaluated in two ways: (1) Quantitative as-

sessment of 
lustering quality using purity and NMI metri
s. We also evaluate

their 
lassifying power (without removing the topology 
onstraint) by perform-

ing k-means 
lustering on the resulting prototypes, and measure unsupervised

1

https://github.
om/FlorentF9/DESOM

2

https://github.
om/XifengGuo/IDEC
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Input: training set; SOM topology; Tmax; Tmin; iterations ; batchSize

Output: AE weights We, Wd; SOM 
ode ve
tors {mk}
Initialize AE (Glorot uniform) and SOM parameters (random samples) ;

for iter = 1, . . . , iterations do

T ← Tmax (Tmin/Tmax)
iter/iterations

;

Load next training bat
h ;

Predi
t SOM pairwise distan
es on bat
h and 
ompute weights wi,k ;

Train DESOM on bat
h ;

end

Algorithm 1: DESOM training pro
edure

Dataset des
ription examples 
lasses dimension

MNIST [12℄ images (digits) 70000 10 784

Fashion-MNIST [13℄ images (
lothing) 70000 10 784

REUTERS-10k [14℄ text (TF-IDF) 10000 4 2000

Table 1: Dataset statisti
s


lustering a

ura
y. (2) Qualitative assessment of the self-organization of the

resulting map, as our model must be topology-preserving.

4.1 Baselines and 
ompared models

We evaluate minisom, a standard SOM

3

; kerasom, our Keras implementation

of a SOM (DESOM with identity en
oder); AE+minisom and AE+kerasom,

with AE and SOM trained separately; and �nally DESOM. We also in
lude

SOM-VAE and k-means (keeping in mind that it la
ks self-organization).

4.2 Training parameters

All models are trained for 10000 iterations with a bat
h size of 256 using the

Adam optimizer [15℄. Initial and �nal temperatures are Tmax = 10.0 and Tmin =
0.1. The AE is symmetri
 with a [500, 500, 2000, 10] en
oder ar
hite
ture, and
the map has 8 × 8 units (to 
ompare with previous work). Empiri
ally, we

�xed γ = 0.001 a
ross all experiments, without 
ross-validation to remain in

a fully unsupervised setting. Large values of γ lead to degenerate solutions

for the autoen
oder, due to the SOM loss being easier to optimize than the

re
onstru
tion loss. Moreover, the model is not very sensitive to the value of γ
as long as it stays in this order of magnitude. Pretraining is bene�
ial in most

deep 
lustering approa
hes, either layer-wise [2,4℄ [6℄, RBM [1℄ or end-to-end [5℄.

However, initializing DESOM with pretrained AE weights does not lead to any

improvement, be
ause the SOM loss produ
es strong gradients at the beginning

of training that disturb en
oder weights and 
an
el out pretraining. Thus, we

use no pretraining.

3

https://github.
om/JustGlowing/minisom
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MNIST Fashion-MNIST REUTERS-10k

Method pur nmi pur nmi pur nmi

k-means (k = 64) 0.842 0.571 0.716 0.512 0.892 0.427

minisom (8× 8) 0.637 0.430 0.646 0.494 0.690 0.230

kerasom (8× 8) 0.826 0.565 0.717 0.512 0.697 0.324

AE+minisom (8× 8) 0.871 0.616 0.734 0.531 0.690 0.235

AE+kerasom (8× 8) 0.939 0.661 0.764 0.539 0.777 0.306

SOM-VAE (8× 8) 0.868 0.595 0.739 0.520 - -

DESOM (8× 8) 0.939 0.657 0.752 0.538 0.849 0.381

Table 2: Purity and NMI (average on 10 runs). Best result and results with no

signi�
ant di�eren
e (p-value > 0.05) in bold.

Method MNIST Fashion-MNIST REUTERS-10k

k-means (k = #
lasses) 58.34 56.45 59.37

AE+kerasom (8× 8) + km 76.06 44.87 36.61

DESOM (8× 8) + km 76.11 56.02 57.18

Table 3: Unsupervised 
lustering a

ura
y (%) (average on 10 runs).

4.3 Quantitative and qualitative results

Clustering quality results (Tab. 2) 
on�rm the bene�ts of redu
ing dimensional-

ity with an AE. The overall best-performing models are AE+kerasom and DE-

SOM. Joint training does not 
onsistently improve purity and NMI on the �rst

two datasets but remains 
ompetitive, performs better on REUTERS-10k by a

fair margin and is faster to train. Interestingly, kerasom a
hieves better than

minisom. The same dis
overy was made by [10℄, suggesting that Adam improves

SOM training. Finally, DESOM 
onsistently outperforms its dire
t 
ompetitor,

SOM-VAE. On the 
lassi�
ation task (Tab. 3), DESOM 
onsistently a
hieves

the best performan
e, demonstrating that joint training with a SOM prior has

enabled to learn a SOM-friendly representation for subsequent 
lassi�
ation.

Visualizations of de
oded DESOM prototypes (Fig. 3) display well-organized

regions 
orresponding to di�erent 
lasses and smooth transitions between them.

In addition, 
ode images learned by the standard SOM algorithm are blurred

be
ause of ve
tor averaging in original spa
e, whi
h is not the 
ase in DESOM.

5 Con
lusion and future work

DESOM is the �rst approa
h that jointly trains an autoen
oder and a SOM

in a 
ontinuous latent spa
e. The learned map is self-organized, 
ompetitive in

terms of 
lustering quality and requires no pretraining. On the 
lassi�
ation

task, it outperforms similar methods. Future work will in
lude a more thorough

investigation of hyperparameters, and extensions to the variational or adversarial

frameworks to learner ri
her representations and provide a generative model.
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Fig. 3: DESOM map of MNIST (left) and Fashion-MNIST (right).
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