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Abstract. Todays datasets, especially in streaming context, are more
and more non-static and require algorithms to detect and adapt to change.
Recent work shows vital research in the field, but mainly lack stable per-
formance during model adaptation. In this work, a concept drift detection
strategy followed by a prototype based insertion strategy is proposed. Val-
idated through experimental results on a variety of typical non-static data,
our solution provides stable and quick adjustments in times of change.

1 Introduction

Recent years showing a rapidly increasing amount of data, generated by sys-
tems like social media or internet of things. In particular, data is streamed
and exceeds the memory and processing capabilities of analyzing systems by
far. Hence streaming algorithms are designed with objective to process data
as fast as they arrive, in an online manner and without storing large portions
of data in main memory. In supervised setting, streams are often affected by
change of underlying class distributions, known as concept drift. This results
in drops in prediction performance of prior models making them unusable. The
detection and handling of these events is one key area in the field of streaming
research. Drifts appear differently by means of speed, intensity and frequency,
i. e. incremental, abrupt, gradual or reoccurring [1].

The stability-plasticity dilemma [1] defines the trade-off between incorporat-
ing new knowledge into models (plasticity) and preserve prior knowledge (sta-
bility). This prevents stable performance over time, because on the edge of a
drift, major efforts going into learning and testing against new distributions.

In this work we propose a streaming algorithm able to maintain stability dur-
ing drift while learning new concepts. We discuss prior work on modification of
LVQ-prototypes and concept drift detectors in Sec. 2. In Sec. 3, the RSLVQ [2],
recently considered as stream classifier [3], is enhanced by a prototype insertion
technique and the Kolmogorov-Smirnov (KS)-Test. Subsequently, we refer to
this method as Reactive Robust Soft Learning Vector Quantization (RRSLVQ),
which is validated by a study in Sec 4. In this study, we focus on frequent
reoccurring abrupt drifts streams, not yet widely considered in the literature.

2 Related Work

Concept drift detectors trying to detect change in streams by monitoring their
distribution or performance of a classifier. A popular approach for observing
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performance values [1], the Adaptive Sliding Window (ADWIN)[4], identifies
changes in distributions using a window W . ADWIN splits W into two adap-
tive subwindows and compares underlying statistics. The main window grows
as there is no change detected and shrinks if a change between statistics of
subwindows is detected. The change is recognized via Hoeffding Bound.

Others methods identify drift not only but mainly via statistical tests on
distributions of streams. In [5] two windows are maintained by a randomized
search tree, which keeps recent data and the last concept. The KS-Test detects
concept drift between windows. Further research is done in [6], where one win-
dow stores a snapshot of the concept since last drift and another stores a recent
surveyed concept. These KS based approaches are lacking a factor of detecting
distribution change at a certain rate.

In context of concept drift handling, techniques can be roughly divided into
active and passive [7]. The latter ones use no explicit detection strategy, hence
constantly updating the model without awareness of concept drift. Active adap-
tation changes a model noticeable. By means of LVQ, prototype adjustment is
common [8]. In [9], a new prototype is inserted as mean of a set of misclassified
examples. The authors of [10] select one sample from given samples as new pro-
totypes which minimizing the error. A near-mean technique is proposed in [8].
It uses the sample as new prototype, which has the smallest Euclidean distance
to the mean of a set of misclassified examples. Besides great results in the re-
spective domains, they share the problem of assuming the existence of all classes
in a given batch of samples or apply asymmetric prototype insertion. Due to the
composition of streams, with potentially unbalanced classes, this assumption is
not guaranteed.

3 Reactive Robust Soft Learning Vector Quantization

In supervised classification a stream with potentially infinite length is a sequence
S = {s1, . . . , st, . . . } of tuples si = {xi, yi}, arriving one st at time t. A classifier
predicts labels yt ∈ {1, . . . , C} of unseen data xt ∈ R by prior model ŷ = ht−1(xt)
and includes this tuple into the model afterwards ht = learn(ht−1, st).

3.1 Concept Drift Detection

Before applying a drift detector, a memory strategy must be defined. The sliding
window Ψ keeps n recent points from the stream. It pushes incoming data to
the top and removing the oldest one from bottom. For further tests we define
two subsets: First, a recent window R = {xi ∈ Ψ}ni=n−r+1 storing the last r
samples. The second should at best represent the current concept and without
any assumption on distributions is sampled uniform from the remaining part of
Ψ forming W = {xi ∈ Ψ|i < n− r + 1 ∧ p(x) = U(x|1, i)} with |W | = |R| = r.

Concept drift is the change of joint distributions of a set of samples and
corresponding labels between two points in time:

∃X : p(X, y)t 6= p(X, y)t−1 (1)

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

438



The term virtual drift refers to a change in distribution p(X) for two points in
time but is also present at real concept drift [1]. Therefore, we assume with the
following detector to identify every concept drift through p(X). Obviously, the
goal of detectors is to identify any change as soon as possible, as in Eq. (1).
Therefore a detector should be monitoring data, rather then performance values.

The Kolmogorov-Smirnov test is a non parametric test inspecting one di-
mensional data without any assumptions of underlying distributions [11]. It
compares the absolute distance between two empirical cumulative distributions
distw,r = supx |FW (x) − FR(x)|. If this lower bound of maximum distance is
greater as the test statistic, then the null hypothesis is rejected, with significance
level α, which is the left part of Eq. (2). For two subwindows with the same
size, the test is reduced to:

distw,r > c(α)

√
n+ r

nr
=

√
−1

2
lnα

√
n+ r

nr

(n=r)
=

√
− lnα

r
(2)

Due to the restriction to one dimensional distributions, the test in Eq. (1) applies
to all dimensions, therefore at any point t, d tests must be done, because Rd.
With this extension and based on Eq. (2) the following can be stated:

Lemma 3.1 Given Xt and Xt−1 with Xk = {xj}nj=1 ∈ Rd, p(X) =
d∏
i=1

p(x(i)),

∀x(i) ∼ i.i.d and their cumulative distributions Ft,Ft−1, KS-Test detects any
change between p(Xt) and p(Xt−1), i. e. ∃x(i) : pt(x

(i)) 6= pt−1(x(i)), with

probability 1− α, if the difference in distribution is least
√
−lnα
r .

To implement Lemma 3.1, we set Xt = R and Xt−1 = W . When it comes
to many statistical tests the problem with multiple hypothesis testing arises,
with the consequence of false positives due to random chance. According to
Bonferroni-Dunn, we reduce this effect by setting α = 0.001 and choosing a
relative small test group r = 30 and n = 200, which increases the required
distance. However, remaining false signals are not critical due to the insertion
strategy in Sec 3.3. Note that with decreasing p-value α, dist increases, and
with increasing window size r, dist decreases. Hence, they behave competitively
w.r.t. dist value.

3.2 Robust Soft Learning Vector Quantization

The Robust Soft Learning Vector Quantization [2] is a probabilistic prototype
based classification algorithm, capable of online learning. Given a labeled dataset
X = {(xi, yi) ∈ Rd × {1, . . . , C}}ni=1 as classification task. The RSLVQ assumes
X can be represented as class dependent Gaussian mixture model and approxi-
mates this mixture by a set of m prototypes Θ = {(θj , yj) ∈ Rd×{1, . . . , C}}mj=1,
where each prototype represents a multi-variate Gaussian model, i. e. N (θj , σ).
The RSLVQ maximizes the objective function:

L =
n∑
i=1

log
p(xi, yi|Θ)

p(xi|Θ)
(3)
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Where p(xi, yi|Θ) is the probability density function that xi is generated by the
mixture model of the same class and p(xi|Θ) is the overall probability density
function of xi given Θ. Eq. 3 will be optimized with online stochastic gradient
ascent (SGA). Note that it converges to an unbiased estimate in the streaming
context like in a batch context if no concept drift occurs [12].

3.3 Prototype Adaptation Strategy

In this work, the insertion strategy adapts actively to abrupt or gradual concept
drift. We allow missing classes in R, since streams have unbalanced classes and
class wise insertion is usually infeasible. If a drift is detected as in Sec. 3.1,
window R represents a new context and Θ represents an approximate summary
of the last context. The current set of prototypes gets out of date. Therefore,
all1 prototypes from Θ will be replaced by m new prototypes.

A good starting point by means of approximating an unknown mixture model
by Gaussian mixture is the mean of points, i. e. θnew = 1

r

∑
x∈R x [13]. This is

followed by online SGA of Eq. 3, optimizing all prototypes on given window R.
Once more, not all classes must be present in the window R. Further, it can be
shown for two prototypes and two classes that the proposed approach leads to
a lower error on R instead of taking no action. Therefore, false signals are not
critical, because every replacement always leads to lower error and false signals
do not harm.

3.4 Time and Memory Complexity

The RRSLVQ optimized via online SGA has the time complexity of O(m) at
given time t for m prototypes without concept drift. The Concept drift handling
has the complexity O(r · m). Note that KS-Test can be implemented in log-
linear time [5]. The demand of memory depends on number of prototypes m
and sliding window size n. Therefore, the approach needs at maximum m×d and
n× d as real numbered integers in memory, which accumulates in complexity of
O(d ·(m+n)) = O(d ·(m+200)) with n = 200. For using RRSLVQ in embedded
systems with restrictive memory, we follow the any memory framework by [1,
p. 6] and we suggest to set the number of prototypes plus the window length
to a maximum of d · (m+ 200) < k with k as maximum integer memory storage
capacity.

4 Experiments

We follow the study design from [14]. We use the Sine, Stagger and Mixed
stream generator with abrupt (A) and gradual over 1000 samples (G) drift for
each generator, so there are six datasets. Each dataset contains one million
samples and drift occurs from sample 2000, every 1000 samples after last drift
is finished. For a full dataset description see [7]. As a rule of thumb, m = 6

1Relevance-based removal is very similar in prediction performance in our experiments.
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Figure 1: Performance of baseline RSLVQ, RRSLVQ, Incremental-RSLVQ,
Adwin-RSLVQ and SamKNN [7] on MixedGenerator stream in SciKit-Multiflow
[15]. Plot shows clear drops in performance of non-RRSLVQ methods during
abrupt concept drift. From point 2000, drift happens every 1000 points after
last drift is finished. Line shows accuracy over last 200 samples. Best viewed in
color.

Sine (A) Sine (G) Stagger (A) Stagger (G) Mixed (A) Mixed (G)
Number Classes/Features 2/2 2/2 2/3 2/3 2/4 2/4

SAM-KNN [7] 88.8 (22) 88.7 (22) 93.7 (397.23) 93.6 (398) 85.9 (24) 85.7 (18)
OzaBaggingAdwin [16] 70.5 (8) 70.9 (8) 81.0 (9) 81.2 (9) 69.2 (10) 69.2 (10)
Hoeffding Adaptive Tree [17] 53.3 (7) 54.9 (7) 77.2 (7) 76.8 (7) 53.1 (8) 52.7 (8)
RSLVQ [13] 49.8 (33) 49.9 (33) 80.6 (33) 80.8 (33) 56.0 (33) 68.0 (33)
RRSLVQ 87.2 (28) 87.1 (28) 83.7 (33) 83.8 (33) 78.6 (33) 78.6 (33)
AdaptiveRandomForest [18] 88.9 (132) 89.0 (132) 96.5 (130) 96.1 (129) 80.4 (196) 80.1 (194)

Table 1: Interleaved test-then-train accuracy on concept drift streams. Moving
average of accuracy on one million samples. Winner marked bold. Required
time in minutes shown in brackets.

and σ = 12 for both LVQ variants. The results2 are presented in Table 1. Our
approach shows a boost in performance to baseline RSLVQ and is comparable to
other concept drift classifier. Note that the slightly reduced performance of the
RRSLVQ at Stagger can be explained by the categorical features, but RRSLVQ
operates in Euclidean space. The RRSLVQ provides stable performance during
drift and high adaptation rate shown in Fig. 1, superior w.r.t. other methods.

5 Conclusion

The proposed method is competitive with current state of the art algorithms and
is to our best knowledge the first concept drift handling (RS)LVQ algorithm
in the streaming setting. Especially, in streams with high rates of drift, the
RRSLVQ shows remarkable stability over time. The KS-Test seems to detect
occurring changes in data and supports the concept drift handling process with
good indicators at given time. Compared to ensemble approaches, it provides a
very simple and interpretable model. The memory complexity is easy to bound
and well-suited for embedding systems.
Future work should tackle the dimension-wise testing at every time step to avoid
unneeded tests. Besides, it should be tested on real-world stream data, with
extensive evaluation of methods, not shown due to space limitations.

2Note that Kappa statistics are omitted due to space issues.
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