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Abstract. We propose a new structure for the variational auto-encoders
(VAEs) prior, with the weakly informative multivariate Student’s t-distribution.
In the proposed model all distribution parameters are trained, thereby
allowing for a more robust approximation of the underlying data distri-
bution. We used Fashion-MNIST data in two experiments to compare
the proposed VAEs with the standard Gaussian priors. Both experiments
showed a better reconstruction of the images with VAEs using Student’s
t-prior distribution.

1 Introduction

Variational auto-encoders (VAEs) [1] are complex generative models that use
variational inference with auto-encoder [2] like architecture to learn the un-
derlying representation. Unlike auto-encoders which only learn the functional
representation of data, VAEs as Bayesian approaches, learn the data probability
distribution, and have shown great outcome in modeling complex distributions
on increasingly larger data.

One way to improve any Bayesian model is to change the prior distribution
depend on the data. Although Kingma and Welling [1] suggested any prior from
location-scale family distribution for VAEs models, most of the studies have
been done only on Gaussian priors. We show, with reformulating Student’s t-
distribution [3] and by using implicit differentiation [4], it is possible to use the
Student’s t-prior. In the case of the presence of outliers in the data, the adaptive
tail thickness can give enormous flexibility to the latent model.

2 Proposed approach

A suitable prior is essential in Bayesian analysis. In lack of knowledge of data,
weakly or non-informative priors are recommended and have shown better re-
sults in many studies [5], e.g., Student’s t-distribution. With knowledge, an
informative distribution like the normal distribution with specified mean and
covariance can be used. Although this prior has shown excellent results in many
studies, O’Hagan [6] showed that normal priors could be outlier-resistant and
never reject outliers in data modeling. Student’s t-distributions allow for more
heavy tails and can reject outliers when used as priors in the modeling. This
motivates an implementation of the VAE with a Student’s t-prior.
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A location shifted p-variant Student’s t-distribution has the probability den-
sity function

f(z) =
Γ( ν+p

2 )

Γ( ν2 )
√
(πν)pσ

(
1 +

(z − μ)Tσ−2(z − μ)

ν

)− ν+p
2

,

with ν the degree of freedom, μ the location parameter and σ scale parameter
of the distribution.

2.1 Architecture of VAE with Student’s t-distribution

As explained in Kingma and Welling [1], the objective of VAE is

max
θ,φ

[ E
qφ(z|x)

[log(pθ(x|z))]− DKL(qφ(z|x)‖pθ(z))], (1)

with the expected likelihood term as a reconstruction loss and the Kullback-
Leibler divergence term as a regularizer factor.

The proposed structure of the VAE is illustrated in the figure 1. To be able to

Fig. 1: VAE architecture with Student’s t-prior. The outputs of the encoder
part are the three parameters of the Student’s t-distribution.

consider the Student’s t-distribution as a prior for the VAE we need to adjust the
objective of the network (the equation 1), to have a differentiable transformation
of the probability qφ(z|x) w.r.t. φ.

Student’s t-distribution belongs to location-scale family distributions and it
is possible to use the reparameterization trick,

X ∼ St(μ, σ, ν), X = μ+ σT, T ∼ St(0, I, ν).

Still, the replaced probability distribution is not a differentiable transforma-
tion. Another reformulation of this distribution [3] is, x ∼ N (0, I) and z ∼
Gamma( ν2 , 0.5) then t = x/

√
z
ν is equivalent to t ∼ St(0, I, ν). Figurnov and

Mohamed [4] found an implicit differentiation of the cumulative function of the
Gamma distribution. With the above formulation of the Student’s t-distribution
it is now differentiable w.r.t all three parameters.
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2.2 Training the Student’s t-VAE

In this study the prior over the latent variables is a multivariate Student’s t-
distribution, pθ(z) = St(0, I, ν) and the variational approximate posterior is
qφ(z|x) = St(μ, σ, ν). The parameters; μ, σ and ν are neural networks, as in
figure 1, with the weights φ. The KL divergence of the objective takes the form

DKL(qφ(z|x)‖pθ(z)) =
∫

qφ(z|x) log
(
qφ(z|x)
pθ(z)

)
dz

= − log|R| −
(
ν + p

2

)
E
qφ

[
log

(
1 +

(z− μ)Tσ−2(z− μ)

ν

)]

+

(
ν + p

2

)
E
qφ

[
log

(
1 +

z2

ν

)]
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Zografos [7] shows that the first expectation in equation 2 is equivalent to

exp
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where ψ(x) = Γ′(x)
Γ(x) is the digamma function. The second expectation in equa-

tion 2 is
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)
dz,

that requires numerical integration. With the expression of the KL-divergence
and a suitable reconstruction error, taking the type of the data into account,
stochastic gradient methods can now be used to train the models.

3 Experiments

We trained VAE with two different priors, a multivariate Gaussian (VAE-G) and
our proposed multivariate Student’s t-prior (VAE-St) on the Fashion-MNIST [8]
dataset. Although Fashion-MNIST has the same shape and grayscale format
as MNIST, the images are more diverse which force the models to learn more
advanced features. In each experiment, the models are trained on 60000 images
and tested on 10000. During training, a fixed validation dataset (20% of train-
ing data) was used for model selection. To estimate the maximum likelihood
E [log(pθ(x|z))], we used cross-entropy. In all experiments, computations were
performed on a single GPU (GeForce GTX 1080 Ti).

3.1 VAEs with complete data

Although the data are images, both VAE-G and VAE-St used multi-layer percep-
trons (MLP) for both the encoder and the decoder. The choice of MLPs instead
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of convolutional neural networks was to simplify the hyperparameter optimiza-
tion process. To evaluate the performance of VAEs, the generated images were
compared with the original ones using the structural similarity [9] (SSIM) index.
Unlike mean squared difference that resembles the images on individual pixels,
SSIM treats images more holistically by comparing local regions of the images.
The best models, after extensive random search [10] on hyperparameters, are
shown in table 1.

Model encoder decoder act lr batch epochs SSIM
VAE-G [1453, 44] [44, 702] tanh 10−3 500 200 0.829
VAE-St [1419, 42] [42, 759] relu 10−4 500 150 0.949

Table 1: The best sets of hyperparameters for each model, together with the
average SSIM index over the test data. The numbers for the encoder and the
decoder are the size of the hidden layer and the dimension of the latent space
(last number in the encoder list and first number in the decoder list).

Examples of images generated by the two VAEs are shown in figure 2. In the
first row, there are 11 randomly selected images, at least one from each class,
from Fashion-MNIST test set. The second and third rows are the corresponding
outputs of VAE-G and VAE-St respectively.

Fig. 2: Generated images from the two VAEs. The first row shows input images
from the test set, row two and three are the corresponding conditionally gen-
erated images from VAE-G and VAE-St, respectively. Note, only one sampled
image for each input is shown. The last column shows the average SSIM index
over the test data.

3.2 VAEs with incomplete data

The importance of using Student’s t-distribution as a prior in VAE is even more
evident in the presence of missing data. The Student’s t-prior, with its adjustable
tails, lets the VAEs find more profound features which improve the estimation of
missing data. To evaluate how well VAEs can impute missing data, we manually
corrupted Fashion-MNIST which enables a comparison with original images.
Image data have high local correlations; therefore a random pixel-wise corruption
will not be difficult enough. Instead, we used Square-lattice Ising-like [11], 28×28
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images of masks. In such a mask approximately 78% of the pixels are corrupted,
i.e., replaced by NaN. The second row of figure 3 shows examples of such masks.

To train the VAE with missing data, we replaced each NaN pixel with the
average over the known samples for that pixel. The loss function is calculated
only on non-missing pixels. Similar to the previous experiment, the VAEs are
evaluated with the SSIM index. The best models, after hyperparameter search,
are shown in table 2.

Model encoder decoder act lr batch epochs SSIM
VAE-G [905, 24] [24, 902] relu 10−3 500 300 0.678
VAE-St [1139, 463, 37] [37, 1308] tanh 10−3 4000 300 0.831

Table 2: The best sets of hyperparameters for each model, together with the
average SSIM index over the test data. The numbers for the encoder and the
decoder are the size of the hidden layers and the dimension of the latent space
(last number in the encoder list and first number in the decoder list).

Figure 3 shows example images from the test set. The first and the third
row show the original (uncorrupted) images and the images after applying the
Ising masks, respectively. The fourth row shows the actual input images to the
VAEs where missing pixels are replaced by mean values over known data (mean
imputation). Mean imputation does not work for this degree and structure
of missing data. Both VAE-G and VAE-St improves over mean imputation as
indicated by the SSIM index. From a visual inspection and as shown by the SSIM
index, the use of a Student’s t-prior is improving the reconstructed images.

Fig. 3: The first row shows examples of original test images. Applying the masks,
shown in row two, results in the corrupted images in row three. The input of
the trained VAE-G and VAE-St is the fourth row (average over known pixels).
The fifth and sixth rows show one sampled image for each input of VAE-G and
VAE-St, respectively. The last column shows the average SSIM index over the
test data.
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4 Conclusion

In this paper, we have implemented a variational auto-encoder with a multi-
variate Student’s t-prior distribution which was accomplished using the implicit
reparameterization gradient of the Gamma function [4].Two different experi-
ments were performed on Fashion-MNIST data with both VAE-G and VAE-St.
In the first experiment, we trained both models with complete Fashion-MNIST
images and evaluated the models on test data. For the second experiment, we
used VAE-G and VAE-St as imputation methods to recover missing pixels on
corrupted Fashion-MNIST data. Both models used cross-entropy as loss function
and their corresponding KL divergence as regularization. With the change of
prior from Gaussian to Student’s t-distribution in the VAE, we were able to get
less blurry and more detailed images for both experiments that were quantified
by the SSIM index being larger for VAE-St in both trials. Although the compu-
tations for the VAE with Student’s t-prior distribution are more extensive, the
difference in execution time on a GPU was not significant. We believe that using
the Student’s t-prior distribution for the VAE allows modeling of more complex
data, such as medical data with a mixture of different input variable types. A
typical challenge in working with medical data is to impute missing values. A
flexible generative model such as the proposed VAE-St can have a significant
impact on imputation, which will be our focus for future developments.
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