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Abstract. The lack of interpretability generally in machine learning
and specifically in visualization is often encountered. Integration of user’s
feedbacks into visualization process is a potential solution. This paper
shows that the user’s knowledge expressed by the positions of fixed points
in the visualization can be transferred directly into a probabilistic principal
components analysis (PPCA) model to help user steer the visualization.
Our proposed interactive PPCA model is evaluated with different datasets
to prove the feasibility of creating explainable axes for the visualization.

1 Introduction

Visualization techniques are widely used to represent high dimensional data.
However sometimes it is hard to understand the embedding result. The inter-
pretability in visualization can be subjectively measured as the level to which
a human can understand the visualization. Thus, one way to enhance inter-
pretability is to allow users to interact with the visualization to gain a better
understanding of the data. For example, forward and backward projection [3]
allows the user to move an embedded point in the 2D space to observe which
features in the high dimensional space are changed according to the movement.
iPCA [6] allows the users to interact with multiple views in data-space and eigen-
space to analyze the influence of a particular data point or a dimension to the
whole visualization in each space. As an inevitable emergence, human-in-the-
loop techniques in visual analytics are more and more studied. The survey of
Sacha et al. [9] presents several works devoted to clarify the interpretation in
visualization. InterAxis [7], for instance, allows the user to select any set of two
features to create a 2D scatter plot in which she can select points as examples
to define new understandable axes.

Besides the interactive techniques intentionally created for visual analyt-
ics, non-interactive dimensionality reduction methods like probabilistic PCA
(PPCA) [10] can be enhanced in an interactive context. In the bayesian vi-
sual analytics framework (BaVA) [5], the user can manipulate the embedding
result of PPCA. When the observations are expected to be close but they are
not in the visualization, the user can move them close together and vice versa.
BaVA transforms this kind of cognitive feedbacks into parametric feedbacks in
order to integrate them into the PPCA model.
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Towards a goal of creating an interpretable visualization, our proposed in-
teractive PPCA (iPPCA) model allows the user to freely move points in the
visualization to create understandable axes. This work differs from the BaVA
framework in that it uses directly the user’s feedbacks as prior knowledge to
construct the model. Based on the principle of model-based machine learning
(Sec. 2), we build the iPPCA model that make use of the user’s feedbacks in the
form of fixed positions as prior information (Sec. 3). The model is visually eval-
uated with different use cases to show its ability to create the explainable axes
based on the user’s intention (Sec. 4). Lastly, we discuss an in-depth motivation
behind our model as a complement to the original PPCA, the shortcomings of
our approach as well as our perspective for the future work (Sec. 5).

2 Background in Model-based Machine Learning

Traditional machine learning offers thousands of well-studied methods for solv-
ing a wide range of problems. When tackling a new problem, our focus is on
mapping it to one of these existing methods, i.e., choosing the right algorithm.
Another approach draws our attention to describe the problem rather than the
method to solve it. This model-based approach [2] uses explicitly the domain
knowledge to construct a probabilistic model to describe the observed data.
The focus is thus on how to represent and manipulate uncertainty about the
model, not the algorithm[4]. The model which is a set of assumptions, expressed
in a precise mathematical form [12], can be hierarchically complex, consisting of
thousands or even millions of random variables. Finding closed-form solution for
all variables is often impractical. However probabilistic programming languages
such as Stan1, PyMC2 or Edward3 can solve the inference problem automatically
and efficiently, what encourages researchers to focus their attention and efforts
on building and testing the models.

Let us consider a problem of dimensionality reduction as an example. PCA
is a technique to find the underlying variables, known as the principal compo-
nents, that best explains the variance in the data. It is done by finding a set
of eigenvectors corresponding to the highest eigenvalues to form a linear map-
ping to project the data from high to low dimensional space. On the contrary,
under a probabilistic view point, the high dimensional data is considered to be
generated from the corresponding latent variables in low dimensional space via
a linear projection with some quantity of noise. The PPCA model consists of
prior assumptions about latent variables, noise and values of the mapping ma-
trix [1]. Our interactive extension iPPCA focuses on describing and evaluating
the integration of user’s feedbacks into the original PPCA model. The principal
components (informally the axes in the visualization) of PCA are orthogonal but
those of PPCA are not, i.e., the visualization of PPCA can be arbitrary. iPPCA
tackles this problem by allowing the user to define semantic axes based on the
interacted examples.

1 http://mc-stan.org 2 https://docs.pymc.io 3 http://edwardlib.org
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3 Interactive PPCA

Let X = {xn}
N

n=1 be an observed dataset of N data points, each xn ∈ R
D.

Let Z = {zn}
N
n=1 be a set of N corresponding latent variables, each zn ∈ R

M .

Let W ∈ R
D×M

,M ≪ D, be a mapping from D- to M - dimensional space.
The latent variables are the embedding to be plotted in 2D space for which the
user can interact with. From now on, when we talk about the embedded point at
the visualization level, we imply the corresponding latent variable in the model
level. To enable interaction, an initial result of the original PPCA model is first
shown to the user in a scatter plot. She can then change the positions of points
to steer the visualization. An embedded point zn (untouched by user) is modeled
by a normal distribution with zero mean and unit variance. If the position of an
embedded point zn is manually set by a user with some level of uncertainty, it
is considered to be drawn from a Gaussian distribution with the mean indicated
by the fixed position µn and the variance σ2

fix indicating the user’s uncertainty:

zn ∼

{

N (zn | µn, σ
2
fix) if zn is fixed by user,

N (zn | 0,1) otherwise.
(1)

In this way, Z consists of both user-modified and non-modified latent variables.
Each data point xn is generated from the corresponding latent variable as xn =
Wzn + ǫ, where ǫ is an isotopic Gaussian noise. The observed data is assumed
to be standardized (zero-centered and normalized to have unit variance). The
prior distributions of others parameters are modeled as suggested in [1]:

ǫ ∼ N (ǫ | 0, σ2I
D
),

σ2 ∼ LogNormal(σ2 | 0, 1).

∣

∣

∣

∣

∣

Wi ∼ N (Wi | 0, αI
M
), i = 1, .., D,

αk ∼ InverseGamma(αk | 1, 1), k = 1, ..,M.

The observed data has D features, each is modeled in the projection matrix by a
M−dimensional vector Wi. Each dimension of Wi has its own variance αk. The
LogNormal and InverseGamma prior distributions of σ2 and α = [α1, . . . , αM ]
enforce the constraints that these variances must always be positive.

Finally, the distribution of an observed data point given the corresponding
latent variable is given by xn | zn ∼ N (xn | Wzn, σ2I

D
). The goal is now

to infer the values of the latent variables and all other parameters, which are
ensemble denoted as θ = {σ2,α,W ,Z}. That can be achieved through max-
imum a posteriori estimation (MAP). Our problem turns into maximizing the
log-likelihood of the posterior distribution, which is equivalent to maximizing
the log-likelihood of the joint distribution of θ and X:

θ
MAP

= argmax
θ

log p(θ | X) ∝ argmax
θ

log p(θ,X). (2)

Adam optimizer is used to solve this inference problem, e.g., the MAP estimate of
the latent variables Z is found by following the partial gradient∇Z log p(θ,X) to
its local optima (and the same for other parameters). Our model is implemented
with the Edward2 library[11] which offers a wide range of differentiable random
variables built on top of TensorFlow’s probability distributions4.

4 https://www.tensorflow.org/probability
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4 Evaluation of the User Interaction

In all experiments, the log-likelihood in Eq. 2 is ensured to increase and converge
(after 500 epochs with an Adam’s learning rate of 0.2). The inferred variances
σ2 and α are strictly ensured to be positive through their priors. In order to
visually evaluate the embedding before and after user’s interaction, σ2

fix is set to
10−3 to make sure the fixed points stay at the same position as indicated. In
all figures, on the left is the initial embedding of the original PPCA. The moved
points are marked by circles and arrows point to their destinations. On the right
is the embedding of the proposed model with the interacted points marked at
their indicated positions (lines show position changes).

4.1 Rotation of the Whole Visualization and Group Enhancement

Fig. 1: Interaction in QuickDraw dataset shows the rotation and group enhancement.

In the first use case, 90 images of 6 classes (airplane, apple, fish, sun, tree,
umbrella) of the QuickDraw5 dataset are randomly picked. Fig. 1 (a) shows
three distinct groups with markers for the interacted points: two horizontal

shape images ( , ) are pulled to the right, two vertical shape images ( , )
are pulled to the top and two round shape images ( , ) are pulled to the left.
We use the word rotation to demonstrate the phenomenon observed in all our
experimentations in which the points moves towards the directions guided by
the interacted points, that make the whole visualization looks like being rotated
as shown in Fig. 1 (b), Fig. 2 (b) and Fig. 3 (b). Points in the same group have
a tendency to move in similar direction, which we call the group enhancement

effect. Based on this result, we experiment two additional use cases showing how
to construct understandable axes thanks to the moved points.

4.2 Creation of the Interpretable Axes

Fig. 2 (a) shows the embedding of 100 images of clothes randomly selected from
Fashion dataset6. A long dress is moved down to the left. A black coast is

5 https://quickdraw.withgoogle.com/data 6 https://github.com/zalandoresearch/fashion-mnist
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moved to the bottom. A rectangular bag at the bottom-right corner is pulled
up. The sandals and the sneakers are pulled up to the left towards the top.
As a result of these user-steering constraints, in Fig. 2 (b), the horizontal axis
presents shape (with vertical-rectangular shapes on the left and full-rectangular
shapes on the right), while the vertical axis presents color density of the clothes
(with the lighter color on the top and the darker color on the bottom).

Fig. 2: Interaction in the Fashion dataset to create two axes of shape and color density.

Fig. 3: Interaction in the Automobile dataset to create two axes of car power and size.

Image datasets can be easily visually evaluated as shown above. We go fur-
ther with the tabular Automobile dataset7 of 203 cars with 26 features visualized
in Fig. 3 (a). The user can move a 2-doors-4-cylinders car (◦) to the top-left
corner, two 2-doors-6-cylinders cars (△) to the bottom-left corner, a 4-doors-6-
cylinders car (N) to the bottom-right corner and two 4-doors-4-cylinders cars
(•) to top-right corner. In the new embedding shown in Fig. 3 (b), we can ex-
plain the two axes induced by the user constraints. The vertical axis represents
the car’s power with the more-than-4-cylinders cars above and the less-than-5-
cylinders cars below. The horizontal axis represent the size of the car with the
small 2-doors cars on the left and the larger 4-doors cars on the right.
7 https://archive.ics.uci.edu/ml/datasets/automobile
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5 Discussion and Conclusion

Our main contribution in this work is to show and evaluate a feasible way to
integrate user’s knowledge through prior distributions of the positions of the
interacted points into a probabilistic dimensionality reduction model for visual-
ization. The user-controlled points are used to rotate the visualization and also
can be used as examples to create the understandable axes.

Probabilistic PCA has a drawback called ambiguous-rotation phenomenon for
which the visualization can be in any rotation around the origin. A rotation-
correction using orthogonal components of the projection matrix is proposed,
however the final embedding is not unique [10]. Using user’s interaction to
guide the iPPCA model can be considered as a complement to solve the above
ambiguousness since the user explicitly defines the axes via the guided points.

The user’s interaction is subjective but the embedding result is explainable,
reasonable and reflects well the user’s intention. However our experiment is
conducted in supposing that all the user’s feedbacks are sound and coherent,
i.e., the indicated positions of the interacted points make sense. In fact this
assumption is not realistic, what reveals several shortcomings in our approach
and leads us to the following research questions for the future work. First, how
many control points can we move freely to obtain a reliable result? Second,
what are the feasible zones in which the points can be moved to and how the
interactive user intent is modeled [8]? Third, how to quantitatively evaluate the
result of iPPCA, e.g., can this be done by using visualization quality metrics,
letting the users evaluate the new visualization by ranking, scoring or evaluating
the new embedding with downstream tasks like clustering or classification?
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