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Abstract. We propose a convolutional neural network (CNN) coupled
with a fully connected top layer for survival estimation. We design an ob-
jective function to directly estimate the probability of survival at discrete
time intervals, conditional to the patient not having incurred any adverse
event at previous time points. We test our CNN and objective function on
a large dataset of longitudinal data of patients with Amyotrophic Lateral
Sclerosis (ALS). We compare our CNN and the objective function against
other neural networks designed for survival analysis, and against the op-
timization of Cox-partial-likelihood or a simple logistic classifier. The use
of our objective function outperforms both Cox-partial-likelihood and lo-
gistic classifier, independently of the network architecture, and our deep
CNN provides the best results in terms of AU-ROC, accuracy and mean
absolute error.

1 Introduction

Survival analysis models the probability that certain event of interest (e.g.
death) occurs after a specific time interval during the follow ups of patient.
Its importance is primarily linked to the need of estimating the effect of differ-
ent conditions (therapy scheme or others) on the time of occurrence of a specific
event (e.g. death, recurrence) when all other subject specific characteristics are
factored out. Traditional approaches to survival analysis, such as the Cox pro-
portional hazards (CPH) model [1], assume that the risk of the event of interest
of a patient can be obtained as a linear combination of the patient’s charac-
teristics. The advent and development of deep learning approaches, together
with a formulation of the Cox hazard function in terms of partial likelihood [2]
has opened the possibility of a further performance increase in the estimation
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of the relative risk of patients [3, 4], by using a nonlinear combination of co-
variates to drive the patients’ risk, outperforming standard linear CPH model.
The key idea is to formulate an objective function that is able to combine the
deep (nonlinear) features and to preserve the ordering between patient score and
time of events: similarly to classical proportional hazard regression, the patients
who are experiencing the event of interest first should be ideally those with the
highest score. However the probability of an event at a specific time is still
estimated post-hoc by modulating the population baseline cumulative survival
function. In this work, we developed a deep-learning architecture to directly
estimate the probability of an event at (pre)defined time points, removing the
need to estimate the relative risk as intermediate step. In detail, we proposed
a convolutional neural network (CNN) coupled with a fully connected layer as
input, in order to exploit all possible relationships among the patients’ features,
which might be unordered and unstructured. The utilization of CNNs greatly
reduces the number of parameters to be estimated with respect to those required
by fully connected networks as those proposed in [2, 3], allowing an increase in
the number of hidden layers.

2 Proportional hazard methods

Proportional hazard models for risk estimation assume that any subject has an
hazard function whose ratio with respect to a baseline population hazard is a
constant proportion depending on the patient specific characteristics (covariates)
xj . Being hj(t) the hazard function for the jth subject, the proportional model
assumes that it is linked to the baseline (population) hazard function h0(t) only
through a scale factor: hj(t) = efθ(xj)h0(t) where fθ(xj) is a generic parametric
function of the covariates xj and of the model parameters θ. Cox regression
[1] assumes a linear function fθ(xj) = θ · xj . Under the assumption that no
censoring and no tied event times exist in the observed subjects, the regression
parameters θ can be estimated maximizing the partial likelihood Lp(θ) of the
events over the entire set of patients, that is maximizing the joint probability
of the ordering of patients’ events instead of the joint probability of the actual
time of events:

θ̂ = max
θ

Lp(θ) = max
θ

∏
ti

eθ·xj∑
j∈Ri

eθ·xj
(1)

Where Ri is the set of patients still at risk of death for any time t larger than the
time of event Ti of the ith subject: Ri = {j : Tj > Ti}. Once the risk function

f̂θ(x) has been estimated, the baseline cumulative hazard function can be ob-
tained with different methods [1, 6, 7]; we used Breslow’s method [8] throughout
the paper:

Ĥ0(t) =
∑
ti<t

ĥ0(t) =
∑
ti<t

1∑
j∈Ri

ef̂θ(xj)
(2)
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from which the baseline survival function becomes Ŝ0(t) = e−Ĥ0(t) and the
probability of survival of the patient j at time t is:

Ŝj(t) = Ŝj(t|xj) = P [t > ti|xj ] = Ŝ0(t)
exp(f̂θ(xj)) (3)

In the case in which multiple patients die at a specific time, or in which we are
interested in predicting the survival at discrete time [9, 10], binning all events
in time intervals, the probability πij = P [t < ti+1|t ≥ ti, xj ] of the patient j to
die in the interval [ti, ti+1) given that he survived up to time ti is given by:

log(−log(1− πij)) = ĥθ(xj) + log(log(Ŝ0(ti+1))− log(Ŝ0(ti))) = f̂θ(xj) + ci (4)

3 Fixed-interval survival estimation

At variance with the hazard estimation problem, where the aim is to estimate
how much a patient survival probability deviates from the baseline (population)
survival function, we cast the problem of estimating the survival probability of a
patient within a time interval as a multinomial classification.In particular, given
the time point ti, and the corresponding time Tj of death of patient j, we define
K disjoint time intervals [ti, ti+1)), [ti+1, ti+2), ...[ti+K−1, ti+K) over which we
want to estimate the survival probability dj(k) for the kth interval:

dj(k) = 1− Pj [t > ti+k|xj ] =

{
0 Tj < ti+k

1 Tj ≥ ti+k

(5)

In the case of right-censored data, the formulation accommodates naturally for
the situation defining the survival probabilities of the patient as 1 for each time
interval.

3.1 Deep-learning architecture

In this work, we proposed a deep-learning architecture ConvSurv for survival
estimation based on a convolutional network [11, 12] in which each neuron can
be interpreted as a filter. This allows on one side to have shared filters across
the network, so that each neuron is computing a feature map when it is applied
to its input signal, on the other side it allows for keeping the number of weights
at a reasonable level when they have to be estimated in very deep architecture,
and finally allows to exploit the possible presence of local structure in the data.
In order to exploit the advantages of convolutional networks even in data not
showing an apparent and obvious structure, such as those coming from clinical,
demographic and laboratory, we inserted on top of the convolutional architecture
a fully connected layer mapping through a linear combination the input data
X ∈ R

1×M into a vector of the same dimension X ′ ∈ R
1×M . The element at

position m of the resulting feature vector X ′(m) = wmXT with wm ∈ R
1×M

is a vector of coefficients: in the extreme case where the weights wm from the
input to each node m = 1, ...,M are such that ||wm||0 = 1 for every m, is simply
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a shuffling of the input vector. This layer allows to find the combination of
measurements that are better exploited by the subsequent filters, and to have
the deeper filters to (possibly) have access to evet available input features, even
if it is outside the receptive field of the filter.

3.2 Objective functions

In this work, two objective functions have been considered for the deep-learning
architectures to estimate survival at specific time intervals. The first is a classical
logistic loss, the second is our proposed derivation of a conditional probability
quasi-logistic loss, explicitly translating a fixed-interval survival model into a
loss function.

For the jth patient the output of the deep-neural network would be a K-
dimensional vector of probabilities fθ(xj) ∈ [0, 1]1×K so that the logistic loss
over all intervals and over all patients becomes:

l(θ) = −
∑
jk

wjk

(
log

( 1

1 + e−fθ(xjk)

)
dj(k) + log

( 1

1 + efθ(xjk)

)
(1− dj(k))

)
(6)

Where fθ(xj , k) is the kth element of the output vector fθ(xj).
The logistic loss assumes that the survival probabilities in each interval are

independent from each other, whereas it is not the case for survival analysis. In
particular, the estimated probability of survival at the kth interval would be:

pθ(xj , k) =

k∏
l=0

fθ(xj , l) ∼= 1−
k∏

l=0

P [tj+l|xj ] (7)

The loss function can be rewritten in terms of a sigmoidal function:

l(θ) =
∑
jk

wjkl(pθ(xj , k), dj(k)) =
∑
jk

wjk log(1 + e|pθ(xj ,k)−dj(k)|−Δp) (8)

Where dj(k) is target vector and pθ(xj , k) the estimated survival probability for
each interval and for each patient. This formulation is defined as quasi-logistic
loss; it is worth noting that this network output does not add any parameter
to the architecture, but rather forces an interplay among the parameters of the
output-layer providing the probabilities at the different intervals.

4 Experiment

In order to compare the performance of both the proposed architecture and the
proposed objective function Eq.8, we tested 4 network architectures (DeepSurv
[2], SurvivalNet[3], ConvSurv, ConvSurv with fully connected initial layer) to
optimize either Cox-Partial-Likelihood, or the logistic loss, or the quasi logistic
loss. We applied the models on data of patients affected by ALS, obtained from
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the PRO-ACT Database, which includes data from 10723 patients, on multiple
visits. The data were first pre-processed in order to remove all records with
missing values, resulting in a dataset of 1936 patients and 16177 records, and
then split to cross-validate the methods into 11 folds each containing all visits
of a different set of 176 patients each: all records of a patient belong at each
run either to the train or to the test set, so that correlations among features of
the same patient can not be exploited by the network. Following [2], we tested
DeepSurv by using one fully connected layer with a number of neurons 3.5 ·D,
where D is the number of available features. SurvivalNet was equipped with
two fully connected layers, and a number of neurons per layer equal to 1.3 ·D,
following [3]. The number of output neurons were decided according to the type
of objective function: one in case of Cox-Partial Likelihood, and six otherwise
to predict survival probability from time 0 to 18 months at interval of 3 months,
in line with the visiting sampling grid used in PRO-ACT. All experiments have
been conducted in Matlab (The Mathworks, Inc) using Matconvnet [13], run on
a NVIDIA R© Titan Xp.

4.1 Results

The predictive performance is reported in Table 1 in terms of Areas Under the
ROC Curve (AU-ROC), accuracy, Concordance index (CI) and mean absolute
error (MAE). AU-ROC defines the ability of methods to classify correctly the
state of a subjects based on their survival probability, averaged over different
time points (months 3 to 18). Accuracy is the ability of correctly predicting a
survival probability higher than 0.5 for each interval in which a patient is alive,
and lower than 0.5 otherwise. CI [14] is defined as the probability that subjects
with lower risk score have higher survival time; values of CI near 1 indicate a
good ranking ability. Mean absolute error provides a measure of the discrepancy
between the predicted time of death (in days from the current visit) and the real
event.
It is worth noting that the ConvSurv network with a fully connected top layer
and quasi logistic loss obtained the highest AU-ROC and accuracy and the best
MAE; indeed, the convolutional layers coupled with a top fully-connected layer
ensures to learn the most informative structures in the data whereas quasi logistic
loss guarantees the modeling of dependencies among time intervals. Besides, all
architectures optimizing both logistic and quasi-logistic objectives outperformed
those optimizing Cox partial likelihood. As expected, the methods optimizing
the ranking of subjects have higher C-index compared to those optimizing the
survival probability estimation.
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AU-ROC Accuracy C-index MAE [days]
Mean (StD) Mean (StD) Mean (StD) Mean (StD)

CPL
SurvNet 0.67 (0.07) 0.63 (0.07) 0.58 (0.03) 566 (166)
DeepSurv 0.62 (0.06) 0.68 (0.05) 0.59 (0.02) 544 (182)
CNN 0.58 (0.09) 0.77(0.03) 0.55 (0.03) 676 (5)

Logistic

SurvNet 0.89 (0.01) 0.87 (0.01) 0.72 (0.04) 139 (9)
DeepSurv 0.90 (0.01) 0.88 (0.01) 0.73 (0.04) 140 (7)
CNN 0.88 (0.01) 0.87 (0.01) 0.73 (0.04) 157 (6)
CNN+FC 0.88 (0.01) 0.85 (0.01) 0.72 (0.03) 151 (7)

Quasi
Logistic

SurvNet 0.94 (0.01) 0.88 (0.01) 0.71 (0.04) 98 (6)
DeepSurv 0.93 (0.01) 0.88 (0.01) 0.71 (0.04) 97 (7)
CNN 0.92 (0.01) 0.87 (0.02) 0.70 (0.04) 104 (8)
CNN+FC 0.95 (0.01) 0.89 (0.02) 0.71 (0.04) 86 (9)

Table 1: Performance in predicting survival time. FC: fully connected layer. We
report the cross-validated results in term of mean and standard deviation of the
performance metrics over the splits used as test sets.
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