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Abstract. Metric learning mainly focuses on learning distances (or sim-
ilarities) that use single feature weights with Lp norms, or pair of features
with Mahalanobis distances. In this paper, we consider higher order in-
teractions in the feature space, with the help of submodular set-functions.
We propose to define a metric for continuous features based on Lovasz
extension of submodular functions, and then present a dedicated metric
learning approach. This is naturally at the price of higher complexity so
that we use k-additive fuzzy measures to decrease this complexity, by re-
ducing the order of interactions that are taken into account. This approach
finally gives a computationally feasible problem. Experiments on various
datasets show the effectiveness of the approach.

1 Introduction

Since the seminal paper of Xing et al. [1], metric learning has attracted a lot
of interest in the machine learning community. It is now widely known that
using a convenient metric in machine learning algorithms is fundamental [2, 3].
A common practice consists in considering the Mahalanobis metric defined by

D2
M (x, y) = (x− y)TM(x− y), (1)

where x and y are d-dimensional vectors, M is a positive semi-definite matrix
that can be learned.

In practice, however, the distribution of the data has been often complex, so
that non-linear approaches have been proposed. In [4], they directly model non-
linear metrics with a discriminative objective, while the authors of [5] propose
a kernelization of a linear metric. In [6], they extend the linear metric learn-
ing approach LMNN to χ2- distances specialized for histogram data and give
a gradient boosted LMNN for non-linear mapping combined with a traditional
Euclidean distance. Having a closer look at the Mahalanobis metric shows that
it consists in giving weight to all possible feature pairs. The use of the inverse
of the covariance matrix for M , i.e. the historical Mahalanobis distance, implies
that the weight of a feature pair is proportional to the cofactor of the features.
Although the cofactor of a pair of features depends on all other pairwise covari-
ances, the actual distance definition only considers the pair-wise combination of
features, whereas d-tuple-wise combinations bring a lot more information.

We are investigating the possibility of giving (and learning) weights to coali-
tions of features whose cardinal can be greater than two. This clearly allows
high order interactions between features, at the price of higher complexity than
regular Mahalanobis based approaches. We will show that we can decrease this

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

355



complexity thanks to constraints on the optimization problem, making the prob-
lem computationally feasible, even for the moderately large dimensional prob-
lem. Moreover, the complexity of the problem may become independent of the
volume of the data.

We consider a class of set-functions f(S) : 2V → [0, 1], that maps subsets S
of a ground set V to unit interval values. Note that, in general, the codomain
of f is not restricted to be the unit interval, but belongs to R. In the sequel,
we will denote d = |V | the dimension of the ground set. This definition allows
associating weights to subsets, in our case subsets of features.

We propose to use set-functions, and in particular submodular set-functions,
in order to weight coalition of features. By a minimum norm point algorithm
used on submodular functions, we propose a linear programming approach for
learning the new metric considering high order interactions between features.

2 Preliminaries

The general formulation of supervised metric learning using the Mahalanobis
distance D2

M (see Eq. 1) is to find M such that it minimizes L(M) = `(M, C) +
λR(M), where ` is a loss function penalizing unsatisfied constraints, with C the
set of constraints. Constraints are selected by splitting the samples into a similar
set S containing pairs with same target label, and a dissimilar setD with different
labels. λ is a trade-off parameter between the regularization term and the loss,
and R(M) is a regularization function. If feasible, this model is generally casted
as a constrained optimization problem minR(M) while s.t. `(M, i) ≤ 0,∀i ∈ C

The objective of this paper is not to present state of the art metric learning
algorithms, and we refer the reader to recent surveys [7] for more details about
historical and new methods dedicated to metric learning using DM .

Following usual metric learning formulation, we use the set-function f with
a newly defined metric D2

f (x, y) = Lf ((x − y)2) for the ability to weight the
d-tuple-wise combination of features, and using relative constraints R for the
following optimization problem.

minf
∑

(i,j,k)∈R

`(i, j, k) + λR(f), (2)

where R is the regularizer on f , and ` is the hinge loss defined as `(i, j, k) =
[γ + D2

f (xi, xj) − D2
f (xi, xk)]+. In the sequel, and following earlier works, the

margin γ is set to 1.
The core part of the new metric Df is the Lovasz extension Lf defined by the

set-function f . The Lovasz extension [8] (also known as the Choquet integral),
allows extending a set-function defined on the vertices of the unit hypercube
to the full unit hypercube [0, 1]d. Another appealing property of the Lovasz
extension is its ability to draw a link between set-functions and convex functions.

The Lovasz extension Lf of x with respect to a set-function f is defined as:
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Lf (x) =
d∑

p=1

x(p)
[
f({q|x(q) ≥ x(p)})− f({q|x(q) ≥ x(p+1)})

]
(3)

where (·) denotes a nondecreasing permutation of the input vector x such
that x(d) ≥ · · · ≥ x(1) and x(d+1) =∞ by convention.

The Lovasz extension allows to set weights to subsets, and we now turn
to its use for defining a metric. It is well known that if N is a norm, then
D(x, y) = N(x−y) is a metric. Consequently, defining a metric with the Lovasz
extension reduces to prove that the Lovasz extension defines a norm, given some
conditions on f .

A norm is a function N : V→ R+ on a vector space V satisfying the following
conditions: N(x) = 0 ⇔ x = 0 for separates points, N(ax) = |a|N(x)∀x ∈ V
∀a ∈ R for absolute homogeneity, and triangular inequality N(x) + N(y) ≥
N(x+ y) ∀x, y ∈ V.

According to [9, 8], we know that a set-function f is submodular, if and
only if Lf (x) is convex. As in [10], the convexity of Lf (x) implies convexity of
Lf (|x|) (by composition of convex non-decreasing functions), and by convexity
of Lf (|x|) we have that Lf (|x|) is a norm.

We now specifically define the Lovasz Extension Metric Df using the squared
Lovasz Extension norm as follow:

D2
f (x, y) = Lf

(
(x− y)2

)
(4)

Note that Equation (4) can be easily generalized on p-Lovasz Extension norms,
exactly the same way as Lp norms in Euclidean spaces.

3 Learning Lovasz Extension Metric

As can be seen in Equation (2), we use the general metric learning formulation of
relative constraints with the new define Lovasz extension metric. The condition
of Lovasz extension metric is the set function f should be submodular. Written
as a constrained optimization problem, we obtain

min R(f) (5)

s.t. `(i, j, k) ≤ 0,∀(i, j, k) ∈ R
f is submodular

Although we are aware that one can consider sparse LP solutions [11] to
tackle this problem, we do not consider this family of approaches in this paper.
Naturally, it can be used to further improve our proposition. Let us use the
following vector notation for the set-function

f = (f({1}), f({2}), · · · , f({1, 2}), · · · , f({1, · · · , d}))T

.
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Straightforward manipulation of the Lovasz extension w.r.t. the set-function
f leads to the following expression, D2

f ((xi, xj)) = aTijf , where:

aij =


(xi(1) − xj(1))2
(xi(2) − xj(2))2

· · ·
(xi

(2d−1)
− xj

(2d−1)
)2

 , (6)

where (.) is the permutation defined within (3).
Therefore, the first constraint in (5) can be written as the inequality MT f +

b ≤ 0, where b is the constant margin vector γ, andA =
(
a1ij − a1ik, · · · ,amij − amik

)
,

corresponding to the m constraints of R. The submodularity of f can also be
written as an inequality. In particular, by using a matrix of {−1, 0, 1} values,
one can write each of the 1

22d(2d + 1) submodular constraints.
Because Lf is linear in f , the problem (5) can be finally written as a linear

inequality program:

min fT r (7)

s.t. CT f + t ≤ 0 and 0 ≤ f ≤ 1

where C =

(
A
ST

)
, t =

(
b
0

)
, (8)

and r is the unit 2d − 2 dimensional vector. In practice, all constraints cannot
be satisfied with real data, so that we introduce non-negative slack variables ξi
for each of these constraints. We subsequently add the penalty term α

∑m
i=1 ξi

to fT r, where α is a trade-off parameter (set to 1 in our experiments). Solving
the revised program gives the solution denoted as Lf hereafter. Clearly, this
problem does not scale with the dimension of the data. The number of values
to be learned, for a d-dimensional dataset is 2d − 2. Furthermore, as indicated
earlier, the number of constraints for verifying submodularity is 1

22d(2d + 1).
In order to deal with this problem, we use k-additive fuzzy measure, see [12],

to set-functions to simplify the optimization problem. A fuzzy measure f is
called k-additive if its Mobius transform θ verifies θ(SA) = 0 for any subset SA

with more than k elements |SA| > k, and there exists a subset SB with k elements
such that θ(SB) 6= 0. If a set-function is k-additive, it implies that there are no
interactions between subsets of more than k elements. According to [12], using
2-additive fuzzy measure formulation as a limited submodularity representation,
the number of constraints decreases to 1

82d(d2 − d) for d-dimensional dataset,
which is much more reasonable for practical problems. In this paper, we show
more result with the k-additive fuzzy measure with k greater than 2. Using this
proposition gives the solution denoted as Lk

f hereafter.

4 Experiments and Results

Now, we conduct experiments which demonstrate the performance, and in par-
ticular the classification generalization performance, of the proposed method of
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Data Euc. LMNN ITML LSML LFDA GMML GBNN Lf Lk
f

bala. 72.66 78.86 (16.95) 77.17 (7.35) 73.82 (0.01) 80.22 (0.01) 80.34(0.42) 68.90(0.23) 81.02 (0.01) 81.12 (0.01)
digits 93.77 94.33 (254.0) 90.94 (0.71) 92.83 (0.01) 94.10 (0.07) 94.73(1.76) 94.87(4.60) 93.89 (126.0) 94.05 (2.60)
glass 61.02 65.21 (4.19) 57.24 (7.53) 64.27 (3.95) 58.17 (0.01) 64.86(0.32) 66.79(0.39) 68.70 (0.94) 68.17 (0.09)
iono 85.75 87.17 (6.58) 85.18 (6.12) 86.04 (0.09) 77.18 (0.09) 87.56(0.16) 94.32(2.32) 86.61 (150.9) 88.60 (2.54)
liver 66.48 63.87 (36.11) 62.26 (7.55) 65.70 (5.43) 66.14 (0.02) 64.72(0.85) 66.48(3.52) 66.48 (0.01) 66.59 (0.01)
seeds 82.57 88.52 (2.45) 87.62 (14.30) 88.10 (2.71) 89.48 (0.01) 88.67(0.61) 88.10(2.42) 90.95 (0.02) 90.49 (0.01)
sonar 50.87 55.69 (2.80) 48.92 (3.11) 51.53 (0.02) 52.86 (0.01) 55.83(1.04) 66.76(2.07) 56.63 (124.9) 59.02 (2.17)
segm. 78.10 82.52 (76.75) 80.29 (1.26) 85.67 (0.05) 83.61 (0.01) 83.34(1.03) 83.42(2.12) 84.38 (168.8) 83.81 (2.76)

Table 1: Accuracy of KNN with different metrics learning algorithm and their
running time in seconds.

metric learning on some real-world datasets. We use 8 data sets from the UC
Irvine Machine Learning Repository, which are Seeds, Sonar, Balance, Glass,
Digits, Liver Segment, and Ionosphere.

We compare the results obtained with the proposed method against several
state-of-the-art linear and non-linear metric learning algorithms: LMNN [3],
ITML [2], LSML [13], LFDA [14], GMML[15] and GBNN [6] using 10 fold cross
validation on the task of K-nearest neighbors classification, with K = 5 (other
values for K were tested, without significant modification)

Finally, we also give the results obtained without metric learning, i.e. the
Euclidean distance for which M = Id. In the first part of the experiments, we are
using the first model Lf , that is using all possible orders of feature interactions.
In particular, the only constraints are related to submodularity and relative
distance constraints. As mentioned earlier, due to the complexity of the model,
our first proposition Lf is not able to process datasets for which the dimension
is (even moderately) large. Consequently, we first use a PCA on the data whose
dimension is greater than 10: sonar, ionosphere, digits, and segment, for which
the lost variance is 12.02, 21.97, 26.26 and 0.008, respectively. The other datasets
remained unchanged.

Accuracy (and running times) obtained on the 8 datasets for each method
are given in Table 1. As can be seen, the proposed Lf generally performs better
than all the other metric learning algorithms (with the notable exception of
Ionosphere and Segment datasets). More precisely, given the rank of averaging
accuracy of each method, we obtain the following ranking Lf � GBNN �
GMML � LFDA ∼ LMNN � LSML � ITML � Id. Note that for low
dimensional datasets, the running time of the proposed method is low, and
quickly increases with the dimension of the data.

The second part of the experiments uses the modified Lk
f . We also use the

k-additive constraint on f in order to decrease the complexity. Increasing k adds
orders of interaction, and finally reaches the order of interaction tackled by the
first Lf approach. It can be noted that each time we decrease k, the number
of free parameters of f is divided by 2, so that running time of the method is
now very reasonable, even for quite large dimensional data. Table 1 also gives
the results obtained through a grid search of k (last column). Interestingly,
we can see that Lk

f often gives better results than Lf , showing that using all
the d-tuple-wise combinations are not always useful, and may even penalize the
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performances (e.g. balance, ionosphere, liver, and sonar).

5 Conclusions and Future Works

In this paper, we present a new metric distance based on the Lovasz extension of
a submodular set-function and give the necessary conditions for defining a proper
metric. Then, we present a linear program allowing to learn this metric and some
variations around the constraints imposed on the set-function. Experiments
show the efficiency of the proposition on rather low dimensional datasets, by
outperforming state-of-the-art metric learning approaches in terms of accuracy.
Potential future work will consist of improving the complexity of the algorithm.
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