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Abstract. The task of video prediction is forecasting the next frames
given some previous frames. Despite much recent progress, this task is
still challenging mainly due to high nonlinearity in the spatial domain.
To address this issue, we propose a novel architecture, Frequency Domain
Transformer Network (FDTN), which is an end-to-end learnable model
that estimates and uses the transformations of the signal in the frequency
domain. Experimental evaluations show that this approach can outper-
form some widely used video prediction methods like Video Ladder Net-
work (VLN) and Predictive Gated Pyramids (PGP).

1 Introduction

In video prediction, the predictor has to model both scene contents and motions.
In recent years, deep learning approaches became the first choice for this task.
Although having a deep network which can learn all the aspects of the task
by itself is appealing, the history of deep learning shows that an appropriate
network structure is key for learning from limited data. For example, typical
properties of images are reflected in the structure of hierarchical convolutional
networks. Video prediction is challenging, due to highly non-linear effects of
local translations in the spatial domain. Estimating motion and using the esti-
mated motion for prediction is much easier in the frequency domain. Multiple
previous works tried to learn image relations by separating content and transfor-
mation [1][2]. The learned features for these architectures are Gabor-like filters
which decompose the signal according to spatial frequency and phase. In the
Relational Auto-Encoder (RAE) [2], for example, the paired responses are then
multiplied element-wise to estimate transformations between two consecutive
frames. We argue that instead of element-wise multiplication of linear filter re-
sponses, we can compute the transformation by calculating phase difference in
the frequency domain. The estimated phase difference can then easily be used
for prediction in frequency space and the predicted frequency representation can
be linearly transformed back into the spatial domain. We show the effectiveness
of our proposed Frequency Domain Transformer Network (FDTN) approach on
three synthetic datasets.

The code and datasets of this paper are publicly available.1

1https://github.com/AIS-Bonn/FreqNet.
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Fig. 1: The proposed architecture for predicting two frames, given two seed
frames. “Transform Model” is modifying the encoded transformation for the
next prediction. “Refine Model” reconstructs details in the spatial domain.

2 Related Work

Although many approaches to the video prediction task have been explored, the
most successful approaches utilize deep learning models. Cricri et al. [3] proposed
to add recurrent lateral connections in Ladder Networks to capture temporal
dynamics of video. These recurrent connections, as well as lateral shortcuts,
relive the deeper layers from modeling spatial detail. The VLN architecture
achieves competitive results to Video Pixel Networks [4], the state-of-the-art on
Moving MNIST dataset, using far fewer parameters.

Another well-known model is PGP [1], which is based on a gated auto-encoder
and the bilinear transformation model of RAE [2]. PGP has the assumption that
two temporally consecutive frames can be described as a linear transformation
of each other. In the PGP model, by using a bi-linear model, the hidden layer
of mapping units encodes the transformation. These transformation encodings
are then used to predict the next frame. Conv-PGP [5] reduces the number of
parameters significantly, by utilizing convolutional layers.

Image registration is a fundamental task in image processing which estimates
the relative transformation between two similar images. A well-known method
for image registration using Fourier domain representation is Phase Correlation.
Phase Correlation can be used to calculate the relative translative offset between
two similar images. Reddy et al. [6] demonstrated that rotation and scaling dif-
ferences between two images can be estimated by converting them to log-polar
coordinates. Foroosh et al. [7] extended this method to work with subpixel trans-
formation. Sarvaiya et al. [8] proposed an extended version of phase correlation
which is more robust and can work under a higher scale. We are inspired by the
phase correlation method and designed FDTN.

3 Frequency Domain Transformer Networks (FDTN)

If we assume periodic boundary conditions, it is possible to formulate the trans-
lation between two consecutive frames as element-wise differences of the phases
of their complex frequency domain representation. We can then use this trans-
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formation to predict the next frame in the frequency domain by simple phase
addition. The last step is converting the predicted frame to the spatial domain.
Fig. 1 gives an overview of our proposed architecture. By using a Transform
network in the frequency domain, we relax the periodic boundary assumption.

At the first step, we calculate the Fast Fourier Transform of two seed frames.
To obtain the translation between two consecutive frames, we calculate the
element-wise phase difference of those frames in frequency domain:
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where Hi,j
k is a vector in the complex plane of the Fourier domain for the

Framek. Ri,j is encoding the transformation in the Fourier domain which has
the shape of [W ×H×2], while each frame has the shape of [W ×H]. Note that
a small positive constant ε is added for numerical stability.

It is possible to encode higher-order transformations like acceleration by cal-
culating the difference of differences using Eq. 1. It is also possible to filter the
noise in the Ri,j by utilizing multiple observations.

We passed the transformation representation Ri,j to “Transform Model”, a
feed-forward network, to address the changes of the transformation. This model
will change the Ri,j in a way that it is suitable for the next frame prediction.
Then, we use the transformed Ri,j for predicting the next frame in the Fourier
domain. We rotate each element by using the constructed rotation matrix:

ˆ
Hi,j

t =

ℜ(Hi,j
t )

ℑ(Hi,j
t )

 =

ℜ(Ri,j) −ℑ(Ri,j)

ℑ(Ri,j) ℜ(Ri,j)

ℜ(Hi,j
t−1)

ℑ(Hi,j
t−1)

 , (2)

where
ˆ

Hi,j
t is the prediction of the next frame in Fourier domain. We can then

obtain the predicted frame in time domain using the inverse FFT.
Although after inverse FFT we have the predicted frame, due to some nu-

merical imprecisions, the result can become blurry after long prediction. This
can be mitigated using the “Refine Model”, another feed-forward network that
is designed for reconstructing detail in the spatial domain.

4 Experimental Results

4.1 Datasets

We used three different datasets to evaluate our proposed architecture. Moving
Morse Code is a simple one-dimensional dataset that contains patterns, which
are chosen randomly from 36 different Morse codes. The patterns are moving
with a random constant velocity. Moving MNIST contains ten frames with one
MNIST digit moving inside a 40×40 frame. Digits are chosen randomly from
training and test set and placed at a random position with a random velocity.
Bouncing Ball dataset contains ten frames with one round object moving inside
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a 40×40 frame. Balls are positioned randomly with a random velocity. Note
that the ball can move with subpixel velocity.

4.2 Models

We used two different trainable models in our computational graph. Each has a
different purpose. “Transform Model” is designed to change the transformations
between frames. In Moving MNIST and Bouncing Ball, this model is responsible
for changing the motion of digits. We propose two Transform Model versions:
FDTN(FC) and FDTN(Conv). FDTN(FC) is utilizing two fully-connected layers
with sigmoid activations. FDTN(Conv) is designed to utilize the structure of
the data by using a three-layer convolutional network with ReLU activations.
The convolutional version is more efficient than the fully connected version,
and it has fewer parameters. The only issue using convolutional layers is the
fact that due to the location-invariant nature of convolutions, we cannot model
location-dependent features. To address this issue, we used location-dependent
convolutional layers, proposed by Azizi et al. [9]. Fig. 4(f) shows that if we
eliminate the TransformModel we cannot predict the changes of transformations.

To mirror the velocity at the border in 2-dimensional datasets, we can flip
Ri,j around the desired axes. We calculate four different versions of Ri,j ; the
original Ri,j , flipped vertically, horizontally, and both. In the last part of the
“Transform Model” network, we have a softmax layer, which can weight be-
tween these four different versions. The weighted sum is then routed for Phase
Adding operation to calculate the next frame. The input to the model is the
predicted frame without the “Transform Model” applied. Note that to have a
more efficient inference implementation, if the object does not need to change
transformation, we can route the predicted frame directly to the “Refine Model”.
The implementation of the “Transform Model” for the Morse Code dataset is
different. Since we don’t need to change the velocity at the border, we denoise
Ri,j using fully connected layers.

Due to numerical imprecision, the predicted frame can become blurry when
predicted for a long time. To mitigate this issue, we propose the second learnable
model, “Refine Model”, consisting of three convolutional layers followed by ReLU

Fig. 2: Moving Morse Code dataset. First two rows are the noisy seeding frames
and the rest are predicted using a) FDTN(FC), b) FDTN(FC) without Trans-
form Model; c) Frequency domain representations of transformation R.
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Fig. 3: Predictions for Bouncing Ball and Moving MNIST (random samples).

activations. The result of these is multiplied element-wise to create the output.
The effect of eliminating this model is shown in Fig. 4(e).

4.3 Evaluation

In our first experiments, we used Moving Morse Code dataset to sanity-check
our implementation. A sample result from this dataset is depicted in the Fig. 2.

In Moving Morse Code, we predicted 18 frames from two noisy seed frames.
Transform Model can learn to denoise the frequency-domain representation.

We evaluate our architecture on both Moving MNIST and Bouncing Ball
datasets. We used Conv-PGP and VLN model as the baselines for comparison.
In these experiments, we predicted eight frames from two seed inputs. Sample
results of our models, as well as used baselines, are presented in Fig. 3.

Table. 1 reports the prediction loss and the number of parameters for the
evaluated models. It can be observed that both of our proposed models outper-
form our baselines on both Moving MNIST and Bouncing Ball datasets.

The model is trained end-to-end using backpropagation through time. We
used Adam optimizer and MSE loss. Similar to VLN and Conv-PGP models,
at each time-step our method predicts one frame, but in contrast to them our
model which is trained for predicting ten sequences, can work well on longer
sequences. One sample of longer prediction is presented in Fig. 4.

Fig. 4: Moving MNIST models trained for ten predictions and tested on a longer
sequence: a) Conv-PGP, b) FDTN(Conv), c) FDTN(FC), d) VLN-ResNet, e)
FDTN(FC) without Refine Model, f) FDTN(FC) without Transform Model.
Note the effects of Refine Model and Transform Model.
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Table 1: Mean squared prediction losses for two data sets.

Model Moving MNIST Bouncing Ball Number of parameters

Conv-PGP 0.06963 0.00409 32K

FDTN(Conv) 0.00316 0.00092 22K

FDTN(FC) 0.00285 0.00086 160K

VLN-ResNet 0.00544 0.00107 1.3M

5 Conclusion

We propose an end-to-end learnable neural network which has a special structure
to estimate the transformation between consecutive video frames in frequency
domain and use this estimate to make predictions about future frames. Exper-
iments indicate that our proposed architecture can solve video prediction task
in synthetic datasets. Our proposed architecture significantly outperforms the
results of both VLN and Conv-PGP models on Moving MNIST and Bouncing
Ball datasets. The fully connected version performs better than the convolu-
tional one, though with more parameters.
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