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Abstract. The vast majority of metric learning approaches are meant
to be applied on data described by feature vectors, with some notable
exceptions such as times series, trees or graphs. The objective of this paper
is to propose metric learning algorithms that consider multi-relational
data. More specifically, we present a metric learning approach taking
into account the features of the observations, as well as the relationships
between observations. Experiments and comparisons of the two settings for
a collective classification task on real-world datasets show that our method
i) presents a better performance than other approaches in both settings,
and ii) scales well with the volume of the data.

1 Introduction

A lot of real-world datasets present aspects of multi-relation between the ob-
servations. For instance, social service networks, Wikipedia network, molecular
biology classification and so forth. Given that studying relations between entities
is a rich domain for knowledge discovery, a number of important science and
technology domains could benefit from advances in relational learning. One of the
most important tasks in relational learning is collective classification. The core
idea of collective classification is that relational data provides useful information
for classification of related entities that may share identical classes [1].

It is also well known that metric learning offers great support on classification
for machine learning algorithms, which all need to use a distance function or a
metric that reflect reasonably well the relationships existing between the different
dimensions of the data. In this paper, we want to formalize or learn, a metric that
specifically takes into account multi-relational data. More precisely, our purpose
is that the proposed metric provides an embedding space for classification, or
visualization, that incorporates both relational and label constraints.

2 Preliminaries

Metric learning is a branch of machine learning whose objective is to find a good
representation of entities through mapping spaces [2]. It offers a metric, adapted
to the data distribution, that is subsequently used in machine learning methods.
This representation is based on a good description of the differences or similarities
between entities. The general objective of metric learning is to find a distance

dM (xi, xj) =
(
(xi − xj)TM(xi − xj)

)1/2
where M is a linear projection matrix

[3]. Given supervised information (labels, ranks, preferences) and unsupervised
information (features, graph links, relations), metric learning algorithms make
use of the constraints on similarity/dissimilarity, or relative similarity. In the
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feasible set with these constraints, we generally consider the generic loss function
written as L(M) =

∑
(i,j,k)∈C `M (i, j, k)+λr(M), where `M (i, j, k) is the encoded

loss from every triple (i, j, k) in the selected constraints set C, and r(M) is a
regularization term on the matrix M (e.g Frobenius norm, trace-norm).

There are a lot of linear metric learning algorithms. LMNN (Large-Margin
Nearest Neighbors) [4] whose objective is to learn a metric keeping k-nearest
neighbors in the same class while giving examples from different classes a large
margin to the given point, by pulling or pushing examples in the embedding space.
ITML (Information-Theoretic Metric Learning[5]) is based on the of LogDet
divergence, which helps to formulate the distance function as a divergence between
Gaussian distributions.

Relational learning deals with learning models for which data consists in
a generally complex relational structure. Such models are learned to perform
specific relational tasks, such as collective classification, or link prediction.

There are many relational learning algorithms, most of them are based on
relational models, such as Probabilistic Relational Models (PRMs) [6] and Markov
Logic Networks (MLNs) [7]. A PRM is based on a specific object representation
through a Bayesian network, with relational schema describing classes in domains.
An MLN is a combination of Markov networks and first-order logic. In addition
to PRM and MLN, lots of relational learning algorithm are based on graphical
models, such as Relational Dependency Networks [8], Relational Markov Networks
[9] or Bayesian Logic Programs [10]. All these approaches are probabilistic
graphical models, directed or undirected. A relational tensor is a tensor which
stores the relationships of relational data with the characteristic function ϕR.
For dyadic relational data modeling, we use a labeled directed graph, in which
entities are nodes and relationships are labeled directed edges pointing from the
subject to the object. The relational tensor then consists in the union of the
characteristic function of the relations.

A relational tensor with n entities and nr different relations can be written
as T ∈ Rn×n×nr :

tijr =

{
1 if Rr(i, j) = 1
0 otherwise.

(1)

Several approaches using relational tensors have been proposed for relational
learning. In [11], focusing on existing link prediction models, the authors extend
matrix factorization to use the side information and overcome imbalance. Tucker
Decomposition (TD) model is used on user-tag-item relational tensor to provide
high-quality tag recommendations. In [12] and [13], they propose RESCAL
factorization. RESCAL decomposes the relational tensor to a core tensor R and
a matrix A. The matrix A quantifies the similarity of the relationships between
entities and can be seen as a new latent feature space. In this paper, we apply
the usual metric learning algorithms in the latent space produced by RESCAL
for a fair comparison. Few works exist for complex, and potentially non-iid, data
such as graphs, trees, strings, sequences, see [14] for examples. In this paper, we
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are particularly interested in a very popular data structure, namely relational
data. In [15], the authors propose a metric learning algorithm, SPML, based
on the adjacency matrix A of a network for learning a Mahalanobis distance
metric defined by matrix M , which is more effective on the inherent connectivity
structure of the network. w

In the next section, we propose to generalize this approach to multi-relational
data: multiple entity tables with multiple relationships. Furthermore, we also
propose to actually use the target labels of the entities, as opposed to SPML,
that only uses links.

3 Relational Metric Learning

There are many metric learning methods related to graph data, however, most
of them focus on the relational pattern or graph structure information, and do
not consider the label information or ignore the information from the feature of
entities.

To the best of our knowledge, there are currently no metric learning approaches
specifically dealing with multi-relational data. Some related works are only
considering graph links, where all graph nodes are the same kind of observations
(e.g. [15]). Other approaches to metric learning are focusing on multi-modal
data. For instance, in [16] they consider several modalities for each observation
(an image) and learn a metric for each of the modalities. In this paper, our
objective is to propose a new approach of metric learning considering all of the
three types of information: features, links and labels. Formally, we propose to
use the following objective function

L(M) =
∑

(i,j,k)∈C

`M (i, j, k) + λr(M) (2)

where C = {CR ∪ CL}, i.e. the union of constraints obtained from relational
information, CR, and constraints obtained from labels, CL. The function `M is
a triplet-wise loss function detailed in the next subsection. Contrary to SPML,
we propose to use fully relational data, and not only a graph in which nodes
correspond to one type of entity. Furthermore, we make use of supervised
information of the node labels, as opposed to SPML. Let us consider relative
constraints, expressed by d2M (xi, xj) + γ < d2M (xi, xk), ∀(i, j, k) ∈ CL. The set
CL contains (i, j, k) triples of data, where the (xi, xj) share the same label and
(xi, xk) have different labels, and γ is a margin. The relative constraints make
sure the entities in different classes be farther with the margin than the entities
with the same labels. Based on common usage [4], we choose γ = 1. We can
decompose the loss `m of Eq. (2) into two distinct losses that take into account
label constraints and relational constraints. Using a hinge-loss, we obtain

`L =
1

|CL|
∑

(i,j,k)∈CL

max(d2M (xi, xj)− d2M (xi, xk) + 1, 0) (3)
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for label constraints. For the relational constraints, we propose to use a
multi-relationship tensor in place of the adjacency matrix. More precisely,
every slice of the relational tensor is seen as an adjacency matrix. There-
fore, we consider the following constraint for each slice r of X, d2M (xi, xj) >
(1 − Rr(i, j)) maxl(Rr(i, l)d

2
M (xi, xl)),∀(i, j). Summing up over all slices, and

using a hinge loss, gives

`R =
1

nr

nr∑
z=1

1

|Cz|
∑

(i,j,k)∈Cz

max(d2M (xi, xj)− d2M (xi, xk) + 1, 0), (4)

where Cz is the set of constraints obtained through the z-th relation of the tensor
cube, more precisely Cz = {(i, j, k)|Rz(i, j) = 1, Rz(i, k) = 0}. Note also that⋃nr

z=1 Cz = CR. Combining label constraints and relational constraints finally
gives L(M) = α`R + (1− α)`L + λr(M), where the parameter α is introduced to
control the trade-off between relational constraints and label constraints. Setting
α to 0 makes the approach consider only label constraints, while setting it to 1
only uses relational constraints. The sub-gradient of the objective function is :

∇L(M) = λM + 1−α
|CL|

∑
(i,j,k)∈C+

L
XC(i,j,k)XT

+ α
nr

∑nr

z=1
1
|Cz|

∑
(i,j,k)∈C+

z
XC(i,j,k),zXT ,

(5)

where C+
L and C+

z are subset of CL and Cz, respectively, for which d2M (xi, xj)−
d2M (xi, xk) + 1 > 0. C(i,j,k) is a sparse matrix storing the parameters C

(i,j,k)
jj =

1, C
(i,j,k)
ik = 1, C

(i,j,k)
ki = 1, C

(i,j,k)
kk = −1, C

(i,j,k)
ij = −1 and C

(i,j,k)
ji = −1.

Otherwise C(i,j,k) = 0. Then, we use a stochastic sub-gradient descent with
mini-batches to optimize the loss function. We call the corresponding proposed
approach Multi-Relational Metric learning (MRML) in the sequel.

4 Experiments and Results

To conduct this study, we use 5 benchmark real-world databases that are tra-
ditionally used in relational learning. In Table 1, properties of the datasets we
used are given, where n is the number of instances, nr is the number of types of
relations and m is the number of features. For the Elite dataset [17], the target
label distinguishes if the elite is top200 or not. In the Mondial dataset [18], labels
are defined by the class of the entities. In the movie one [19], labels are movie
types. For the UW dataset [20], the phase is used as target label. Finally, the
Mutagenesis [21] dataset, in which labels are defined by the types of atom.

As mentioned in the introduction, usual metric learning approaches solely rely
on the use of features, and do not make use of the relations between observations.
In order to fairly compare metrics, we propose to first embed the data into a
space that reflects the relations within the data. To this aim, we propose to use
a powerful and recent multi-relational tensor factorization called RESCAL [13]
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Dataset n nr m Classes

Elite 4747 41 7 2
Mondial 185 23 4 2

Movie 1804 26 5 18
UW 278 4 3 2

Mutagenesis 4893 6 2 3

Table 1: Dataset characteristics.

[12] as a baseline for encoding the relationships between entities, and then use a
metric learning algorithm in the corresponding latent space.

In all experiments, we use the K-nearest neighbors (KNN) algorithm with
K = 5 and measure the effect of every metric with the cross-validation accuracy
score (other values for K were tested without significant changes). The value
of λ in the MRML algorithm is set to 0.5 (other values were tested, without
significant changes). To be fair, for all learning algorithms, we set the same
maximum number of constraints nc, and after testing several different sets the
ranks are similar. In [22] they choose 100 for nc and in [4, 5] they set maximum
number of iteration, the result we show in this paper with nc equal to 200 for
meeting the requirements of each algorithms. Results are given in Table 2. As

Accuracy Running time (s)

Dataset ITML LSML LFDA MRML RESCAL ITML LSML LFDA SPML MRML

Elite 89.3±0.3 90.8±0.8 90.2±0.5 91.2±1.3 2864 206.6 4.13 3.02 24.19 25.30
Mondial 61.3±6.6 56.5±11.3 59.5±7.1 71.2±6.3 1.17 1.89 0.09 0.01 20.33 21.52
Movie 39.2±2.8 38.5±1.8 39.9±1.5 40.8±1.3 832 434.1 0.96 2.19 14.93 22.15
UW 70.2±1.5 55.9±7.0 90.6±5.3 88.5±2.7 0.96 44.4 0.06 0.01 17.46 16.80
Muta 79.7±1.5 70.6±1.6 72.0±1.3 86.2±1.3 96.14 92.61 3.19 1.37 34.70 21.12

Table 2: Cross-validation accuracy of KNN with different metric learning methods.

can be observed, MRML performs better than other approaches, except on the
UW dataset, for which LFDA is better (although closely followed by MRML).
Total running time of each of these algorithms is given by adding the RESCAL
projection time and their individual running times.

5 Conclusion and perspectives

In this paper, we propose a new metric learning method, MRML, based on both
features and relationships of entities in multi-relational data. We extend and
generalize the SPML approach [15] using the adjacency matrix of a network to a
relational tensor, with feature vectors as entities. Then, we present a stochastic
subgradient descent algorithm to learn this metric. A parameter, α, allows
controlling the amount of supervision of the algorithm, ranging from no use of
labels to no use of relations. As perspectives, let us mention the extension of the
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approach to non-binary relations (e.g. the relation between a user and a movie
can be a rating, which is valued), or vector-valued relations.
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