
An evolutionary approach for optimizing
weightless neural networks

Maurizio Giordano1 and Massimo De Gregorio2

1- Istituto di Calcolo e Reti ad Alte Prestazioni (ICAR – CNR)
Via P. Castellino, 111 – 80131 Naples – ITALY

2- Istituto di Scienze Applicate e Sistemi Intelligenti “E. Caianiello” (ISASI – CNR)
Via Campi Flegrei, 34 – 80078 Pozzuoli (NA) – ITALY

Abstract. WiSARD is a weightless neural network model using RAMs
to store the function computed by each neuron rather than storing it in
connection weights between neurons. Non-linearity in WiSARD is imple-
mented by a mapping that splits the binary input into tuples of bits and
associate these tuples to neurons. In this work we apply the evolutionary
µ + λ algorithm [1] to make evolve an initial population of mappings to-
ward the generation of new mappings granting significant improvements
in classification accuracy in the conducted experiments.

1 Introduction

WiSARD1 is a weightless neural network (WNN) model of computing widely
used in literature as a pattern recognition method in image processing [2] and
machine learning [3]. WNNs differ from artificial neural networks (ANNs) in
that learned information is stored in memory cells (RAMs) located in neurons
connected each other with weightless connections.

Learning and classification capabilities of WiSARD are very depending on
the choice of the input-to-neuron mapping function [4]. In this work we provide
evidence, by means of experiments on several case studies, that evolutionary
optimization of WiSARD mappings is not only a viable approach but it also
provides significant improvements in terms of accuracy. In particular, by apply-
ing a well-known evolutionary method [1] and by defining our own crossover and
mutation operators, we developed a simple framework for the optimization of the
input-to-neuron mapping which is a very critical hyperparameter of WiSARD.

2 The WiSARD model

WiSARD derived from the n-tuple recognition method introduced by Bledsoe
& Browning (1959) [5]. The basic computation unit is the n-tuple neuron or
RAM neuron: a RAM with 2n memory cells. The simplest RAM network with
properties of generalization is called discriminator and consists of a layer of m
RAM nodes with n inputs so that the single layer receives a binary pattern of
m×n bits. WiSARD is a multi-discriminator system in which each discriminator
is trained to a different class of patterns. Training and classification phases of

1Wilkie, Stonham and Aleksander Recognition Device.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

325

Fig. 1: WiSARD discriminator model

a WiSARD consist of writing and, respectively, reading the RAM node memory
contents. In particular, training consists of storing (writing) a nonzero value
in those RAM memory locations addressed by the binary input pattern; while
classification consists of reading and then adding (response) the RAM memory
contents addressed by a previously unseen pattern.

Although originally conceived to recognize binary patterns in image process-
ing, WiSARD can also be applied to the classification of multi-variable numeric
data in machine learning [3]. Figure 1 describes a WiSARD discriminator and
how a 3-variable numeric datum (the vector x, y, z) is encoded into a binary
pattern then mapped to a layer of RAMs. Classifiication accuracy in WiSARD
depends on the choice of the input-to-neuron mapping. In this work we face the
problem of optimizing this mapping which is represented by a 2D integer array
formed by m rows (number of neurons) and n columns (bit positions, n-tuples).

In our optimization problem, the fitness of mappings is a “black-box” func-
tion that associates a mapping to the accuracy of a 10-fold cross-validation of a
WiSARD using that mapping. Gradient-based optimization cannot be applied
since it does not work with “black-box” systems. Although Grid (or Random)
search could be applied to the optimization of “black-box” objective functions,
this technique performs an exhaustive (or randomly selective) searching in a
subset of the hyperparameter space. Even if we have only one parameter to vary
(the mapping array), the number of possible mappings is so huge,2 that it is
unpractical to limit the search in a significant subset of it. Bayesian optimiza-
tion builds a probabilistic model for “black-box” objective functions and uses an
acquisition function to determine the next position x in the parameter space to
locate the optimum. Since in our case the parameter value is a very large array,
it is quite complex to develop such an acquisition function.

3 The evolutionary approach

Evolutionary optimization is used in hyperparameters optimization for statisti-
cal machine learning algorithms, deep neural network architecture search and

2The number of different partitions of s indices into m groups of n elements is: Prm,n =(s
m,n

)
= s!

m!n!
, which, for m=8 and n=4, gives almost 1029 possible mappings!

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

326

training of weights [6, 7]. We adopted an evolutionary approach for our opti-
mization problem for the following reasons: 1) it applies to “black-box” systems;
2) the searching is not limited to a subset of the parameter space; 3) the next
position in the parameter space is computed by simple crossover and mutation
operators; and 4) during the evolution, multiple paths towards optimal solutions
are explored at the same time.

Mappings as individuals of a population. We denote with M
nm

the space of map-

pings (2D arrays) formed by a number m of n-tuples of indices between 0 and
s-1, where s=m×n. The trivial mapping is the linear one (see Eq. 1), and
each permutation of elements in a mapping produces a licit mapping for WiS-
ARD discriminators with m neurons and n-tuple based addressing (see Eq. 2).

M0 =

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

 ∈Mnm (1) Mi ∈M
nm
→ Perm(Mi) ∈M

nm
(2)

Starting form a mapping, an equivalent one is obtained by swapping 1) two
indices in the same n-tuple (same row), and/or 2) two n-tuples (rows) in the
mapping, since exchanging two memory cells in a RAM and/or two neurons does
not change the WiSARD’s behaviour. From now on, with Mi we indicate the
equivalence classes of mappings in M

nm
. The fitness of Mi (see Eq. 4) is a real

function that associates the 10-fold cross-validation accuracy of a WiSARD with
parameters n, m and Mi trained on a dataset D.

P = {M1, . . .Mµ} ∈ M
nm

µ (3) F :M
nm
×D → [0, 1] ∈ R (4)

select :M
nm

λ →M
nm

µ mate :M
nm

2 →M
nm

2 mutate :M
nm
→M

nm
(5)

Selection, mutation, and recombination are described as operators that trans-
form the entire population. The select operator extracts µ individuals from a
population of size λ. In case λ=µ, then a 1:1 replacement of the population
occurs, although the selection procedure is stochastic and the same individual
can be selected multiple times, according to the fitness values. The mate op-
erator applies on a pair of parent individuals and produces two new children
individuals. The mutate operator generates individuals by mutating other indi-
viduals. The iterative application of recombination and mutation of individuals
is named variation loop and new individuals produced at each iteration form
the offspring. The way operators are applied in the variation loop is one of the
characteristic of an evolutionary algorithm. Mutation and recombination of in-
dividuals is stochastic: the application of mutation depends on a parameter Θu

representing the probability that an offspring is produced by mutation, while
recombination depends on a parameter Θr representing the probability that an
offspring is produced by crossover. To describe the algorithm, we also need to
define the following utility functions: the clone(Mi) function generates perfect
copy of individuals; the rndInd(P) and rndPairInd(P) functions randomly ex-
tract, respectively, an individual and a pair of individuals from the population.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

327

Crossover and mutation. The crossover operator swaps the sub-arrays of two
mappings at the middle row. Let us consider two mappings each formed by eight
quadruples (n=4, m=8). The crossing point of the two matrices is the 5th row,
and after crossover application the two mappings become:

mate

11 22 10 2
16 14 28 26
20 13 24 5
17 8 30 25
23 1 31 6
4 18 29 19
9 7 27 3
0 21 15 12

,

27 29 3 30
8 25 2 11
28 5 4 16
22 18 13 31
14 6 21 26
9 19 1 23
12 17 20 24
15 10 0 7

→

11 22 10 2
16 14 28 26
20 13 24 5
17 8 30 25
31 6 21 4
9 19 1 23

12 18 29 27

15 |3| 0 7

,

27 29 3 30
8 25 2 11
28 5 4 16
22 18 13 31
23 1 14 6

26 17 20 19

9 7 24 |10|
0 21 15 12

. (6)

After crossing matrices some duplicated indices may occur: they are identified
and then swapped, in such a way the output mappings have no duplicates.3

In a mapping mutation at most n pairs of n-tuples are involved and selected
at random. In each pair of tuples, a swapping of indices at the same position
occurs. The position is different for each pair, so that n exchanges occur at
different columns of the mapping. Only 2×n rows are involved in the swapping
of indices, no matter if the mapping contains a larger number of rows. If the
mapping has less than 2×n rows, then the swapping operation will be in a
number of m/2. An example of mutation could be the following:

mutate

11 22 10 2

16 14 28 26
20 13 24 |5|
17 8 30 25

31 6 21 |4|
9 19 1 23
12 18 29 27
15 3 0 7

→

11 8 10 2

16 14 1 26
20 13 24 |4|
17 22 30 25

31 6 21 |5|
9 19 28 23
15 18 29 27
12 3 0 7

. (7)

Evolution. The evolution of WiSARD mappings is described in Algorithm 1.
First, a population of µ mappings is initialized with invalid fitness. The evolution
loop begins and lasts τ steps. At each evolution step a variation loop iterates λ
times. Two threshold values Θr and Θu are set such that Θr + Θu < 1. At each
variation step a random choice in the range [0,1] is extracted: if choice is less than
Θr two individuals from the parental population are randomly extracted, cloned
and then mated. Only the first child is appended to the offspring. Otherwise, if
choice is in the range [Θr, Θr+Θu[one individual from the parental population is
randomly selected, cloned and then mutated. The resulting mutant is appended
to the offspring. Otherwise, if choice is in the range [Θr+Θu, 1] one individual
is selected at random from the parental population, cloned and appended to
the offspring (reproduction). At the end of the evolution step, the offspring
is appended to the parental population and its fitness is evaluated. From the
parental-plus-offspring set the select operator randomly extracts µ individuals
with best fitness which form the new population for the next evolution step.

In [8] the authors proposed a similar evolutionary approach for optimization
of input-to-neurons mappings, although they only considered mutation opera-
tions.4 The fitness of the mutated mapping is evaluated and then adopted if it is

3While this is not a requirement in the WiSARD’s definition, in our adoption of this neural
model we assume that the input-to-neuron mapping has no duplicate indices, that is neurons
span the entire input pattern with no overlaps.

4A number t of discriminator inputs (binary input points) are swapped at each mutation.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

328

Algorithm 1 (µ+ λ) algorithm

Require: µ, τ , λ, Θr, Θu

Ensure: M(τ) best population after τ runs
t← 1
M(t)← initialize(µ) . create initial population
F(t)← evaluate(M(t)) . initialize fitness as invalid
while t < τ do . evolution loop
Mo ← {} . init offspring with empty set
for i = 1, 2, . . . , λ do . variation loop

choice = random()
if choice < Θr then . crossover

Mx,My ← clone(randomPairInd(M(t))
Mx,My ← recombine(Mx,My)

else if choice < Θr + Θu then . mutation
Mx ← clone(rndInd(M(t))
Mx ← mutate(Mx)

else . reproduction
Mx ← clone(rndInd(M(t)))

end if
Mo ← append(Mx,Mo)

end for
t← t+ 1
M(t)←Mo +M(t− 1) . add offspring to population
F(t)← evaluate(M(t)) . calculate fitness of offspring
M(t)← select(M(t),F(t), µ) . select µ individuals from population

end while

greater than the previous one. To avoid the risk of limiting the search within a lo-
cal optimum, the simulating annealing technique is used.5 The (µ+λ)-algorithm
copes with the same problem of local optimum by mixing, at each stage of the
evolution, the parental population with the offspring. The authors in [8] showed
a 10% increase in the discrimination power in a character recognition application.
In our experiments we observed higher percentage increases in performance.

4 Experiments

For the validation of our approach we used WiSARD-Classifier,6 i.e. a supervised
classification method [3] based on WiSARD for multi-variable numeric data. In
all experiments we chose an initial populations with µ=100 linear mappings, and
λ=µ. The evolution loop iterated for τ=50 steps, while crossover and mutation
probabilities were set to Θr=0.5 and Θu=0.2. We computed optimal mappings
for ten datasets selected from the UCI Machine Learning repository.7 In all
experiments we used WiSARD models with parameters n=4 and z=64, with
model fitness being the 10-fold cross-validation accuracy on each dataset.

Figure 2a shows the evolution of the average accuracy of models trained on
the iris dataset: after 40 steps the algorithm converges and the population of
mappings with zero deviation gives the highest accuracy. Figure 2b compares the
1st generation average accuracy of models with that at the end of the evolution on
10 different datasets. Performance comparison of WiSARD and Random Forests

5The number of swaps t exponentially decays from an initial value, thus allowing large
jumps in the search space at the early stages of the evolution loop.

6Available for download at: https://github.com/giordamaug/WisardClassifier-C vectors.
7http://archive.ics.uci.edu/ml

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

329

(a) accuracy plot on iris dataset

WiSARD RF
n=4, z=64 n.estimators=100

dataset start end criterion=entropy

balance 0.701 0.814 0.701
ecoli 0.806 0.881 0.857
glass 0.668 0.748 0.780
hayes 0.575 0.887 0.819
iris 0.940 0.980 0.967

monks-1 0.746 0.996 0.985
phoneme 0.749 0.837 0.912

sonar 0.702 0.740 0.754
vehicle 0.624 0.731 0.753
wine 0.972 0.989 0.977

(b) comparison with Random Forests (RF)

Fig. 2: WiSARD’s accuracy improvements on some UCI datasets

is also reported. The results are very good if we consider that WiSARD was
configured with a limited addressing scheme (n=4) and a rough discretization
(z=64) of numeric values. This is due to the algorithm that, at each generation,
mixes parental and offspring individuals with high fitness: in this way, the indi-
viduals not selected to form the current offspring are not discarded and, later on,
they could produce new and more profitable paths of evolution for mappings.

5 Conclusions

In this work we faced the problem of optimizing input-to-neuron mappings in a
weightless neural network called WiSARD. We used an evolutionary algorithm,
called (µ+λ)-algorithm [1], together with recombination and mutation operators
we designed and implemented for the purpose. The experimental results on ten
UCI datasets validated the approach and its good performance.

References

[1] T. Back, D.B. Fogel, and Z. Michalewicz, editors. Basic Algorithms and Operators. 1999.

[2] Massimo De Gregorio and Maurizio Giordano. Background estimation by weightless neural
networks. Pattern Recognition Letters, 96:55–65, 2017.

[3] Massimo De Gregorio and Maurizio Giordano. An experimental evaluation of weightless
neural networks for multi-class classification. J. of Applied Soft Computing, 13, July 2018.

[4] I. Aleksander and T. J. Stonham. Guide to pattern recognition using random-access mem-
ories. Computers and Digital Techniques, IEE Journal on, 2(1):29–40, February 1979.

[5] W. W. Bledsoe and I. Browning. Pattern recognition and reading by machine. In Eastern
Joint IRE-AIEE-ACM Computer Conference, pages 225–232, New York, NY, USA, 1959.

[6] Steven R. Young et al. Optimizing deep learning hyper-parameters through an evolutionary
algorithm. In Proc. Workshop on Machine Learning in High-Performance Computing
Environments, MLHPC ’15, pages 1–5, New York, NY, USA, 2015. ACM.

[7] Erik Bochinski, Tobias Senst, and Thomas Sikora. Hyper-parameter optimization for
convolutional neural network committees based on evolutionary algorithms. 2017 IEEE
International Conference on Image Processing (ICIP), pages 3924–3928, 2017.

[8] J.M. Bishop A.A. Crowe P.R. Michinton R.J. Mitchell. Evolutionary learning to optimise
mapping in n-tuple networks. In IEE Colloquium on Machine Learning, pages 1–3, 1990.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

330

