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Abstract. This paper presents an application of neural network signal
processing to estimate the position of a hydraulic valve spool, based on
acoustic excitement of the spool’s end chamber. The spool’s end cham-
ber acts somewhat like a Helmholtz resonator whose frequency response
changes based on its volume (and therefore spool position). However, non-
ideal characteristics of the system including wave propagation effects and
distributed parameters mean that estimating the volume is more compli-
cated than simply evaluating the resonant frequency. In this case the fre-
quency response has high dimensionality with high redundancy and noise.
We present the use of linear and nonlinear principal component analysis to
preprocess the frequency response data prior to neural network regression.

1 Introduction

Hydraulic valves are used to control the flow of pressurized fluid in the hydraulic
systems of construction, automotive, mining and industrial machinery. By shift-
ing a valve’s cylindrical spool axially in a bore, orifices can be opened and closed
to redirect or throttle the flow. It is often desirable to measure the position of the
spool while in service, for closed loop control, power management or diagnostic
reasons. This is often achieved in the laboratory using linear variable displace-
ment transformers (LVDTs), laser or eddy current sensors but these have proved
impractical for field installation.

We propose using pressure measurements in a novel way to estimate the
valve position: Helmhotz-style resonance. A classical Helmholz resonator is a
rigid sphere with a neck [1]. The interaction of the compressibility of the fluid in
the sphere with the mass of the fluid in the neck results in a resonant frequency

ωH =
c

2π

√

A

V L
(1)

where c is the wave speed, A is the cross-sectional area of the neck, L is the neck
length, and V is the cavity volume. The resonant frequency is strongly affected
by the volume of the cavity, an effect that has been exploited for a number of
volume measurement schemes [2], including food volume measurement [3] and
the volume of fluid in spacecraft fuel tanks [4].

In our application we wish the measure the volume of the spool end chamber
(as shown in Figure 1), which can be related to the spool position. In this case
the frequency response of the chamber and attached passageways is affected
by the volume, but the response is non-ideal and the Helmholtz equations no
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longer apply. This is primarily due to the non-ideal shape of the inlet (changing
cross section and branching) and wave propagation within the system, creating
internal reflections that can cause resonances at multiple frequencies other than
the Helmholtz frequency. Although complex, there is a relationship between
the volume and the frequency response that this can be exploited for position
measurement.

2 Experimental Method

An experimental appartus was built to generate training data to test this method.
The pressure compensator valve from a 28 cc/rev axial piston pump was removed
from the pump and mounted on a test block. This valve spool has a diameter of
7.0 mm and moves 3.6 mm axially, as shown in Figure 1. A piezo disc actuator
was connected to the compensator inlet port via a length of flexible hose to reduce
the transmission of structural vibrations. The dynamic pressures at the inlet,
p1, and within the end chamber, p2, were recorded using high frequency piezo
pressure sensors. For each test a repeating Maximal Length Sequence (MLS)
was generated from the piezo actuator [5]. We used a sequence of length 8191,
broadcast at a rate of 33.3 kHz, synchronized with the pressure measurements.
The position of the spool was set by rotating the threaded end cap.

Fig. 1: Experimental schematic, showing (1) piezo actuator, (2) pressure trans-
ducers, (3) flexible hose, (4) threaded end cap, (5) spool. Note that this is not
to scale, and the inlet between p2 and p1 is a convoluted passageway.

The complex frequency response for each time response was calculated using

the Empirical Transfer Function Estimate (ETFE) G(ω) = P2(ω)
P1(ω) where P2(ω)

and P1(ω) are the discrete Fourier transforms of p2(t) and p1(t).

3 Results

The resulting frequency response data is quite noisy, as shown in Figure 3 for
1038 repetitions at a single fixed spool position. Averaging can be used to reduce
the influence of noise, but this takes an impractical amount of time for dynamic
measurements. For example, Figure 2 shows the average frequency response for
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each spool position, using about 5 minutes of data for each. Clearly the spool
position has an influence on the expectation of the frequency response, but it
would be difficult to manually pick out features in an individual measurement
that would rise above the noise.

We therefore attempted to apply an artificial neural network regression to
estimate the spool position from the frequency data. The experimental data
collected above resulted in a dataset with 9089 examples, each with 8191 input
variables (magnitude and phase for each frequency). Our data matrix has only
slightly more observations than input variables, so overfitting is a concern.
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Fig. 2: Magnitude frequency response
for six spool positions. These plots are
derived from approximately 5 minutes
of data for each position. The phase is
also used as an input, but not shown
here.

Fig. 3: A total of 1038 measurements
of the frequency response at normal-
ized position y=0. The white line
shows the response derived from mean
measurements and 90% of data falls
between the black lines.

3.1 Linear Principal Component Analysis

As the noisy data has high dimensionality with high redundancy, it was ex-
pected that the useful information can be compressed into a more compact form
using principal component analysis (PCA). This involves finding an orthogonal
transformation resulting in the data not being linearly correlated, and ordered
by variance [6]. Specifically, the eigenvectors and eigenvalues of the covariance
of the data are calculated. The eigenvectors can be used to transform the data
into principal components, and the eigenvalues give the “strength” of a the cor-
responding principal component. The eigenvalues can be plotted to estimate
the number of components that must be included to accurately represent the
data. As shown in Fig 4, the frequency data recorded has one strong compo-
nent, with the remainder of lower strength. The first three eigenvectors are also
plotted, showing the relative weighting applied to each parameter (related to
each frequency’s importance in the solution). As shown in Figure 5, when the
transformation is applied to the data there is still considerable variation between
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measurements, but the mean of the first principal component is well correlated
with the normalized position data.
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Fig. 4: Principal component analysis eigenvalues (left), and eigenvectors for the
three strongest components (right). This shows one strong principal component
followed by a gradual reduction of the following weaker components.

3.2 Nonlinear Principal Component Analysis

The linear PCA above requires linearly separable principal components. How-
ever, we know that the system under study is nonlinear so the analysis may be
incomplete or misleading. In order to evaluate the number of nonlinear prin-
cipal components in the data, we performed a nonlinear PCA by training an
autoassociative autoencoder network with a bottleneck layer [7]. In our case, we
used 30 perceptron neurons in the hidden layers before and after the bottleneck
layer. The resulting error curve is shown in Figure 6. By looking at the point
where the error is reduced we can estimate the number of principal components:
approximately 10 if one looks at the median error or 5 for the minimum error.

3.3 Artificial Neural Network Training

A multilayer perceptron network was used to perform a nonlinear regression on
the data: estimating the spool position from the frequency response. All training
was performed using scaled conjugate gradient backpropagation with Tikhonov
regularization [8]. This was performed using Matlab 2018 on a desktop PC with
an Intel i7-8700 processor, 32 GB RAM and GeForce GTX 1080 Ti GPU.

First we performed a naive training on the raw data. The high dimension-
ality of this data caused a relatively long training time as well as considerable
variability in performance. Figure 7 shows the validation error for multiple rep-
etitions while varying the network size (a randomly selected 20% of the data
was used for validation). It also shows the resulting position estimation. This
naive regression has an adequate performance with a RMS validation error of
0.0820 and training time of 76.7 s, but the high variability of the result means
the training should be repeated multiple times to obtain good results.
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Fig. 5: Principal components, calcu-
lated for the three strongest eigen-
vectors. This shows both the trans-
formed individual observations, as
well as the mean (solid line).
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Fig. 6: Nonlinear principal compo-
nent analysis, showing autoencoder
error as the size of the bottleneck
layer is varied.
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Fig. 7: (Left) Root mean squared validation error for a conventional neural
network, as the number of neurons in each of the two hidden layers is increased.
At right, validation outputs for the best network, with a RMS error of 0.0820.

We then trained the network using the linear principal components as inputs.
Figure 8 shows the validation error as principal components are added. The best
validation performance occurs for 14 principal components, with an RMS error
of 0.0652 and a training time of 14.2 s. The individual position estimations for
the validation data are also shown. Clearly, reducing the dimensionality of the
data allows for better performance, faster training and calculation time, as well
as less risk of overfitting. There was less variation in the validation results, so an
acceptable set of training weights can be expected requiring fewer repetitions.
We found good results for a network with 10 neurons in each of two layers
(although performance was not particularly sensitive to the network size).
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Fig. 8: (Left) Root mean squared validation error while varying the number of
principal components used for the network inputs. The black horizontal lines
indicate the accuracy of a naive network for a number of runs and the red vertical
lines indicates the point where the input matrix is square. At right, validation
results for the best network, with a RMS error of 0.0652.

4 Conclusion

This paper presents the application of principal component analysis and dimen-
sionality reduction to highly correlated and noisy data: the case of using the
pressure frequency response of the hydraulic spool end chamber to estimate the
spool’s position. We found that the best conventional neural network had a
validation error of 8.20% and took 76.7 s to train, with large variability in val-
idation performance. By contrast, by using the linear principal components as
inputs to a neural network, the validation error was reduced to 6.52% (a 20%
improvement), training time was reduced to 14.2 s, and the variability in was
reduced.
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