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Abstract. The backpropagation algorithm [1] is the most successful
learning algorithm for training deep artificial neural networks. Its inner
workings are in stark contrast with other learning rules, as it is based on
a global, black box optimization procedure rather than the repetition of
a local, neuron-level procedure (e.g. like hebbian learning [2]). In this
paper, we present preliminary evidence suggesting that local, neuron-level
mechanisms are in fact emerging during backpropagation-based training
of neural networks and describe what could be key components of it.

1 Introduction

It has often been assumed that in a trained network, the activation of hidden
neurons reflects the presence/absence of a semantic concept in the input signal.
This resulted for example in the usage of activation functions with a binary
threshold since the origin of artificial neural networks (e.g. [1]). This intuition
is probably due to the fact that artificial neural networks have been inspired by
neurons from the brain which, we suspect, operate in such way [3]. It has also
been strengthened by several works showing experimentally that activations in a
network trained through backpropagation sometimes correlate with the presence
of semantic concepts in the input signals (e.g. [4, 5]).

What lacks around this intuition, however, is a proper understanding of how
such neuron-level behaviour would emerge during backpropagation-based train-
ing. Indeed, it is interesting to note that backpropagation performs (stochastic)
gradient descent, which is a very general optimization algorithm that was not
specifically designed for neural network training. In contrast with other learning
algorithms, which embrace the neural network structure by repeating neuron-
level mechanisms, gradient descent considers neural networks as black box dif-
ferentiable functions containing an unstructured collection of parameters that
all try to optimize one global loss function. In other words, the decomposition
of neural networks in hidden neurons is completely ignored by gradient descent’s
learning rule.

Intrigued by the considerable gap between backpropagation’s basic principles
and the commonly held view that hidden neurons learn to detect semantic con-
cepts, this paper’s goal is to explore experimentally what kind of neuron-level
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dynamics emerge during backpropagation-based training. Instead of studying
training from the perspective of the network’s parameters, as is commonly done,
we’ll study it from the perspective of a neuron. More precisely, we’ll monitor
both the partial derivatives of the loss w.r.t the neurons’ outputs (because they
reveal how the neurons’ outputs should be modified for each sample), and the
neurons’ pre-activations (to see if the neuron, through training, is able to realize
the modifications provided the inputs it receives). These two signals are illus-
trated in Figure 1.

Fig. 1: Illustration of an artificial hidden neuron inside a network. ϕ and L
denote the activation function and the training loss respectively. The indices
i, j, t stand for the neuron, input sample and training step index respectively. In
this paper, we monitor both the partial derivative of the loss w.r.t the neuron’s
activation ( ∂L

∂ai,j
)t, and the neuron’s pre-activation pi,j,t.

2 Experimental setup

The studied network is a 2-layer multi-layer perceptron (MLP) with 512 neurons
in both hidden layers, which is trained on MNIST [6]. We moreover use a 0.5
dropout rate [7] after each layer. In addition to the ReLU activation function
[8], we also analyse a version of the MLP with the sigmoid activation function
and a version without any non-linear activation function. Through the paper,
we will repeatedly refer to specific layers of the network. We simply refer to the
two fully-connected layers as dense1-act and dense2-act, act being replaced by
the used activation function (relu, sigmoid or linear).

We train the network for 50 epochs, using a learning rate of 1e−1 for the ReLU
variant, 1e−3 for the linear variant and 1 for the sigmoid variant. The batchsize
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is 128 and we use the normalized initialization scheme described in [9].

3 Derivatives suggest that neurons classify samples into
two categories

During training, but in a separate process, we record for 30.000 input samples
the partial derivative of the loss with respect to the output of randomly selected
neurons (cfr. ( ∂L

∂ai,j
)t in Figure 1) on a regular basis (every 10 batches, leading to

2350 recordings). For each (input sample, neuron) pair, we compute the average
sign of the partial derivatives over the recordings at the different training steps.
This value tells us whether an increased activation generally benefits (negative
average) or penalizes (positive average) the classification of the sample.1

Figure 2 shows, for six randomly selected neurons from different layers, the
histograms of the computed average signs. As one can see, the average partial
derivative sign is either 1 or -1 for most of the samples, which indicates that the
derivative sign doesn’t change at all through the training. The activation of a
sample, in a specific neuron, should thus be either always increased or always
decreased throughout training to improve its prediction. This is exactly the be-
haviour you would expect in the output of a binary classifier trying to separate
two categories. Since around half of the activations have positive derivatives and
the other half negative ones, a neuron seemingly tries to classify the inputs into
two categories of nearly equal size.

4 Watching neurons learn

The derivatives strongly indicate that a neuron, during backpropagation-based
training, tries to separate two categories of inputs. Does this effectively hap-
pen during training? We assign each sample to a category based on its average
activation partial derivative sign, and see how both categories’ pre-activations
evolve across the recordings. Categories are named ’low’ and ’high’ for posi-
tive and negative average derivatives respectively. Figure 3 shows the results
for a neuron in dense2-relu, dense2-sigmoid and in dense2-linear. We observe
that indeed, both categories are being separated during the training proce-
dure. Supplementary visualizations are available in video format on https:

//www.youtube.com/channel/UC5VC20umb8r55sOkbNExB4A.

5 The hidden neuron’s ability to create subtasks

Our analysis currently ignores the impact of activation functions on the neuron-
level dynamics. Here, we present one role activations functions might play,

1Due to the use of float32 precision, zero partial derivatives appear at some point in training
when the sample is correctly classified with high confidence. Since the signs of these values
are not relevant, they are ignored when the average sign is calculated.
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Fig. 2: The figures show the histograms of the average sign of partial derivatives
of the loss with respect to activation of samples, as collected over training for
a random neuron in six different layers (cfr. ( ∂L

∂ai,j
)t in Figure 1). An average

derivative sign of 1 means that the derivative with respect to the neuron’s activa-
tion for this sample was positive in all the recordings performed during training.
We clearly observe two distinct categories: some sample activations should al-
ways be increased, others always decreased. This reveals that the neuron receives
consistent information about how to affect the activation of a sample, allowing
it to act as a binary classifier. As detailed in Section 2, the experiment was per-
formed on a network trained on MNIST (with ReLU, sigmoid or linear activation
functions).

which we call subtask creation. As one can see in the last column of Figure 3,
the neurons we studied are not able to fully separate the two categories that were
assigned to them by the backpropagated derivatives. Instead of failing at trying
to separate them completely, another pertinent strategy for a neuron would be
to focus on the classification of a subset of the samples. The subtask so created
would be easier for the neuron to realise with high precision, and the classifica-
tion of the neglected samples would hopefully be managed by other neurons of
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Fig. 3: Evolution of the pre-activation distributions across training. Plots corre-
spond to one neuron from dense2-relu (first row), dense2-sigmoid (second row)
and dense2-linear (third row). Pre-activations are separated into two categories,
high and low, based on the average partial derivative sign over training of their
corresponding activation (cfr. Figure 2). We can see that both categories are
being separated during training, providing supplementary evidence that hidden
neurons behave like binary classifiers during backpropagation-based training.

the same layer, leading to a divide-and-conquer strategy.

The ReLU, which is currently the most successful activation function, seems
particularly adapted for the emergence of such strategy. Indeed, a ReLU neuron
cancels the derivatives of all samples with a negative pre-activation, and thus
ignores them during training of all its incoming connections/weights. Figure
4 (left) shows this mechanism in action in a neuron of the MLP network we
study. Indeed, we observe that at the end of training, samples with positive
pre-activations are classified (in the low and high categories associated to the
neuron) with much higher accuracy than samples with negative pre-activations.
In our experiments, we observed a similar behaviour in sigmoid neurons when
all pre-activations are negative (cfr. Figure 4 (right)). In such case, the more
the pre-activation of a sample is negative, the more the sigmoid neuron shrinks
its derivative, which enables the neuron to focus on samples with higher pre-
activations.
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Fig. 4: A ReLU (left) and a sigmoid (right) neuron are able to focus on the clas-
sification of a subset of the samples with high precision by canceling/shrinking
derivatives associated to samples in the saturated regions of the activation func-
tion.

6 Conclusion

Intrigued by the gap between the basic principles of the backpropagation algo-
rithm and the intuitions that have successfully guided neural network research
since their origin, our paper investigates experimentally if neuron-level mecha-
nisms emerge during backpropagation-based training. Our first results, based on
a simple MLP network, are conclusive: we observe that hidden neurons behave
like binary classifiers, dividing the inputs (or a subset of them, depending on
the activation function) into two categories of quasi equal size. Many questions
remain, and further validation of our claim is needed. Our hope is that this
paper will foster interest around this original approach to apprehend the inner
workings of deep learning.
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