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Abstract. Kernels for structured data are commonly obtained by decomposing
objects into their parts and adding up the similarities between all pairs of parts
measured by a base kernel. Assignment kernels are based on an optimal bijection
between the parts and have proven to be an effective alternative to the established
convolution kernels. We explore how the base kernel can be learned as part of
the classification problem. We build on the theory of valid assignment kernels
derived from hierarchies defined on the parts. We show that the weights of this
hierarchy can be optimized via multiple kernel learning. We apply this result to
learn vertex similarities for the Weisfeiler-Lehman optimal assignment kernel for
graph classification. We present first experimental results which demonstrate the
feasibility and effectiveness of the approach.

1 Introduction

Graphs are a versatile concept used to represent structured data in many domains such
as chem- and bioinformatics, or social network analysis. Graph kernels have become
an established and widely-used technique for solving classification tasks on graphs. In
the past 15 years a large number of graph kernels have been proposed. One of the most
successful in practice is the Weisfeiler-Lehman subtree kernel [1], which is based on
the color refinement heuristic for graph isomorphism testing. Recently, the Weisfeiler-
Lehman optimal assignment kernel [2] was proposed, which also uses color refinement,
but derives the kernel from an optimal bijection of the vertices instead of summing over
all pairs of vertices. In classification experiments, this approach yields higher accuracy
scores than the Weisfeiler-Lehman subtree kernel for many data sets. More recently,
several deep learning approaches to graph classification based on neural networks have
emerged. These methods construct a vector representation for each vertex by iteratively
applying a neighborhood aggregation function with learned weights. Most of them
fit into the neural message passing framework proposed in [3] and show promising
results on several graph classification benchmarks [4]. Compared to these approaches,
kernel methods are considered “shallow” since they do not learn a representation by
means of weights organized in a hierarchical manner. This also is the case for the deep
graph kernels proposed in [5], which support weights between graph features, but do
not learn them end-to-end. However, there are kernel methods that can justifiably be
described as deep [6]. This is the case for multiple kernel learning, which was, for
example, used to combine base kernels organized in a hierarchy according to their level

∗This work was supported by the German Science Foundation (DFG) within the SFB 876 “Providing
Information by Resource-Constrained Data Analysis”, project A6 “Resource-efficient Graph Mining”.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

107



of abstraction [7]. Moreover, it was used to alleviate the diagonal dominance problem of
convolution kernels for graphs [8].

We propose deep assignment kernels for structured data which learn the base kernel
on substructures as part of the training. To this end, we consider base kernels represented
by a hierarchy for which the weights are obtained via multiple kernel learning. Building
on this, we propose a deep method for graph classification based on the Weisfeiler-
Lehman method. The feasibility of the approach is demonstrated experimentally.

2 Basic Techniques

We introduce the fundamentals and key techniques relevant for our contribution in the
following. A kernel on a set X is a function k : X × X → R such that there is a real
Hilbert spaceH and a mapping φ : X → H with k(x, y) = 〈φ(x), φ(y)〉 for all x, y in
X , where 〈·, ·〉 denotes the inner product ofH. We consider simple undirected graphs
G = (V,E), where V (G) = V is the set of vertices and E(G) = E the set of edges.
An edge {u, v} is for short denoted by uv or vu, where both refer to the same edge. A
graph with a unique path between any two vertices is a tree. A rooted tree is a tree T
with a distinguished vertex r ∈ V (T ) called root.
Optimal assignment kernels. A common approach to compare two graphs is to con-
struct an assignment between their vertices that maximizes the structural overlap or
agreement of vertex attributes. This principle was proposed to obtain graph kernels,
where the similarity between two vertices is determined by a base kernel [9]. However,
it was shown that the resulting similarity measure is not a valid kernel in general [10].
More recently, it was proven that for a specific class of base kernels, the similarity
derived from optimal assignments is guaranteed to be a valid kernel [2].

Let [X ]n denote the set of all n-element subsets of a set X and B(X,Y ) the set of
all bijections between X,Y in [X ]n for n ∈ N. The optimal assignment kernel Kk

B on
[X ]n is defined as

Kk
B(X,Y ) = max

B∈B(X,Y )

∑
(x,y)∈B

k(x, y), (1)

where k is a base kernel on X . For the application to sets of different cardinality,
the smaller set can be augmented by dummy elements with no effect on the solution
value. Given that the base kernel k satisfies the strong kernel property, i.e., k(x, y) ≥
min{k(x, z), k(z, y)} for all x, y, z ∈ X , the function Kk

B is a valid kernel [2]. Strong
kernels are equivalent to kernels obtained from a hierarchical partition of their domain.
Formally, let T be a rooted tree such that the leaves of T are the elements of X and
ω : V (T ) → R≥0 a weight function. We refer to the tuple (T, ω) as a hierarchy. A
hierarchy on X induces a similarity k(x, y) for x, y ∈ X as follows. For v ∈ V (T )
let P (v) ⊆ V (T ) denote the vertices in T on the path from v to the root r. Then the
similarity between x, y ∈ X is

k(x, y) =
∑

v∈P (x)∩P (y)

ω(v).

For every strong kernel k there is a hierarchy that induces k and, vice versa, every
hierarchy induces a strong kernel [2].
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The optimal assignment kernel of Eq. (1) can be computed in linear time from the
hierarchy (T, ω) of the base kernel k by histogram intersection as follows. For a node
v ∈ V (T ) and a set X ⊆ X , let Xv denote the subset of X that is contained in the
subtree rooted at v. Then the optimal assignment kernel is

Kk
B(X,Y ) =

∑
v∈V (T )

min{|Xv|, |Yv|} · ω(v), (2)

which can be seen as the histogram intersection kernel for appropriately defined his-
tograms representing the sets X and Y under the strong base kernel k [2].
Weisfeiler-Lehman optimal assignment kernels. Color refinement, also known as
1-dimensional Weisfeiler-Lehman refinement or naı̈ve vertex classification, is a classical
heuristic for graph isomorphism testing. It iteratively refines partitions of the vertices
of a graph, where the vertices in the same cell are said to have the same color. In
each iteration two vertices with the same color obtain different new colors if their
neighborhoods differ w.r.t. the current coloring. More recently, the approach was used to
obtain kernels between graphs [1]. For the Weisfeiler-Lehman subtree kernel a graph
is represented by a feature vector, where each component is associated with a color
and counts the number of vertices in the graph having that color in one iteration. The
Weisfeiler-Lehman subtree kernel is the dot product of such feature vectors.

We give a clear mathematical formulation of the procedure. Given a parameter h and
a graph G with initial colors τ0, a sequence (τ1, . . . , τh) of refined colors is computed,
where τi is obtained from τi−1 by the following procedure. For every vertex v ∈ V (G),
sort the multiset of colors {{τi−1(u) : vu ∈ E(G)}} to obtain a unique sequence of
colors and add τi−1(v) as first element. Assign a new color τi(v) to every vertex v by
employing an injective mapping from color sequences to new colors. It was observed
in [2] that color refinement applied to a set of graphs under the same injective mapping
yields a hierarchy on the vertices. This hierarchy with a uniform weight function induces
the strong base kernel

k(v, v′) =
h∑
i=0

kδ(τi(v), τi(v
′)) (3)

on the vertices, where kδ denotes the Dirac kernel. This kernel measures the number of
iteration required to assign different colors to the vertices and reflects the extent to which
the vertices have a structurally similar neighborhood. The optimal assignment kernel
with this base kernel is referred to as Weisfeiler-Lehman optimal assignment kernel and
was shown to achieve better accuracy results in many classification experiments than the
Weisfeiler-Lehman subtree kernel.
Multiple kernel learning. Multiple kernel learning refers to machine learning tech-
niques that extend classical kernel-based support vector machines to use multiple (hetero-
geneous) kernels, which are combined using coefficients learned as part of the training.
One such approach is EasyMKL, which is scalable to a large number of kernels and can
be used to obtain a data-driven feature weighting [11]. EasyMKL combines the kernels
ki, i ∈ {1, . . . , R}, to a kernel k(x, y) =

∑R
i=1 αiki(x, y) by learning the coefficients
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αi ≥ 0. This is achieved by optimizing the problem

max
α:‖α‖=1

min
γ∈Γ

(1− λ)γ>Y

(
R∑
i=0

αiKi

)
Y γ + λ ‖γ‖22 , (4)

where Ki is the l × l kernel matrix obtained by applying ki on the training set of
cardinality l, Y the diagonal matrix with yi,i the class label of the ith training example
and λ a hyperparameter for regularization. The set Γ is the domain of probability
distributions γ ∈ Rl≥0 defined over the sets of positive and negative training examples.

3 Deep Assignment Kernels

We investigate how the base kernel used to compare the parts can be learned as part
of the classification problem when comparing structured objects with an assignment
kernel. There are several basic difficulties with this general approach. Since we derive a
similarity measure from a combinatorial problem, it is not clear how changing the base
kernel will effect the value of the optimal assignment. In particular, small changes in the
base kernel value may lead to entirely different optimal assignments. Solving a single
assignment problem takes cubic time in general, which is not feasible for large instances.
Moreover, the value of assignments does not yield a valid kernel in general.

Therefore, we consider a highly restricted class of base kernels. We learn the base
kernel from the class of kernels that are induced by the same tree T . Every base kernel
in this class is uniquely defined by T and the weight function ω, which we would like to
learn as part of the training. Following the results summarized in Sec. 2 and considering
Eq. (2) it becomes apparent that this can be achieved by multiple kernel learning. For
every node v ∈ V (T ) we consider the kernel kv(X,Y ) = min{|Xv|, |Yv|}. Solving
Eq. (4) yields coefficients αv with ‖α‖ = 1 that can be interpreted as learned weights
ω(v) = αv for the tree T to form a hierarchy. In this way, we hope to obtain strong
kernels that are adaptive to the specific learning task. However, the adaption is possible to
a limited extent only: The tree T determines a set of optimal solutions to the assignment
problem. These solution will remain optimal under all learned weight functions, though
their value may change. In case of αv = 0 an equivalent hierarchy is obtained by
removing the node v from the tree and attaching its children to the parent of v. In this
case the set of optimal solutions may be a superset of the optimal solutions obtained for
the tree with uniform weights.
Deep Weisfeiler-Lehman assignment kernels. We apply the observations stated
above to the Weisfeiler-Lehman optimal assignment kernel, which is based on the
hierarchy generated by color refinement as detailed in Sec. 2. The hierarchy induces a
similarity between the vertices, such that with each level the extent of the considered
neighborhood increases. In its original version uniform weights where used that induce
the vertex similarity stated in Eq. (3). Introducing weights as above, we obtain the vertex
similarity

k(v, v′) =
h∑
i=0

ω(τi(v)) · kδ(τi(v), τi(v′)) (5)
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as base kernel, where ω is a weight function for the colors of the refinement process.
We refer to the assignment kernel with this base kernel as Deep Weisfeiler-Lehman
assignment kernel. Please note that the value of the parameter h is typically determined
by a grid search in a costly cross-validation process. Our approach is less dependent on
the choice of this parameter since too specific features are down weighted automatically.
Feature and weight grouping. Depending on the strong kernel and the data set, the
representing hierarchy and therefore also the number of weights may be very large. This
is, for example, the case for the Deep Weisfeiler-Lehman assignment kernel, since the
color refinement process effectively distinguishes vertices with different neighborhoods.
A very large number of weights slows down the training and may lead to overfitting. To
control the number of weights, we group the nodes of the hierarchy using a clustering
algorithm. To this end, we represent each node v in the hierarchy by the data point
(cv1, c

v
2, . . . , c

v
n), where n is the size of the data set and cvi is the number of elements of

the ithe object in the data set that are contained in the subtree rooted at v. We apply
k-means clustering to these vectors and, finally, assign weights to each cluster. Therefore,
all nodes in the same cluster share the same weight learned by the MKL algorithm.

4 Experimental Evaluation

We performed classification experiments using the C-SVM implementation LIBSVM
and the EasyMKL implementation of MKLpy v0.2.1b0.1 We report average prediction
accuracies and standard deviations obtained by 5-fold cross-validation repeated 5 times
with random fold assignment. Within each fold all hyperparameters were selected by
cross-validation based on the training set. The regularization parameter C was selected
from {0.01, 0.1, 1, 10, 100} and the parameter λ from {0.1, 0.3, 0.5, 0.7, 0.9}.

We compare the Weisfeiler-Lehman subtree kernel (WL), the Weisfeiler-Lehman
optimal assignment kernel (WL-OA) and its deep variant without feature grouping
(DWL-OA1) and with feature grouping (DWL-OA2), where the number of clusters
was set to k = 10. We set the number of color refinement iterations to h = 4 for all
experiments. We tested on widely-used graph classification benchmarks from different
domains [12]. MUTAG, PTC-MR, NCI1 and NCI109 are graphs derived from small
molecules, PROTEINS and D&D represent macromolecules, and REDDIT contains social
network graphs. All data sets consist of two classes, the vertex and edge labels were
ignored, if present.

We were not able to run DWL-OA1 on the large date sets with more than thousand
objects due to memory constraints. All results are summarized in Table 1. We observed
only minor differences in accuracy between the three Weisfeiler-Lehman optimal assign-
ment kernels. DWL-OA2 performs better than DWL-OA1 which indicates the benefit of
feature grouping. For the considered data sets, DWL-OA has obtained state-of-the-art
accuracy results, but there is no clear evidence that learning weights via MKL improves
the classification accuracy significantly. However, we have observed that a significant
proportion of the learned weights is zero, which leads to compact sparse models.

1https://pypi.org/project/MKLpy/
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Table 1: Classification accuracies and standard deviations on graph data sets representing
small molecules, macromolecules and social networks.

Kernel
Data Set

MUTAG PTC-MR NCI1 NCI109 PROTEINS D&D REDDIT

WL 88.3±1.2 54.5±2.5 78.9±0.6 79.6±0.3 70.6±0.5 73.2±0.4 71.7±0.3

WL-OA 88.6±1.0 55.8±2.3 78.6±0.3 78.8±0.6 73.8±0.4 75.7±0.3 88.5±0.3

DWL-OA1 88.1±1.0 56.7±2.3 OOM OOM OOM OOM OOM
DWL-OA2 88.5±0.9 57.6±1.3 78.9±0.2 78.5±0.2 72.5±0.4 76.7±0.3 86.9±0.2

5 Conclusion

We have proposed Weisfeiler-Lehman assignment kernels which learn deep represen-
tations for graph classification. It remains future work to analyze the learned weights
and their domain-specific meaning in detail. We believe that the interpretability of the
weights in terms of vertex neighborhoods is a strength of the approach and can give new
insights into real-world problems. Our method only allows to learn vertex similarities
from a predefined restricted class of functions. In the future, we would like to study
more general approaches such as learning the entire hierarchy and not just its weights.
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