
Short-term trajectory planning using reinforcement
learning within a neuromorphic control architecture

Florian Mirus1,2, Benjamin Zorn1,2 and Jörg Conradt3

1- BMW Group - Research, New Technologies, Innovations, Garching, Germany
2- Technical University of Munich - Department of Electrical and

Computer Engineering, Munich, Germany
3- KTH Royal Institute of Technology - Department of Computational Science

and Technology, Stockholm, Sweden

Abstract. In this paper, we present a first step towards neuromorphic vehicle
control. We propose a modular and hierarchical system architecture entirely imple-
mented in a spiking neuron substrate, which allows for the adjustment of individual
components through either supervised or reinforcement learning as well as future
deployment on dedicated neuromorphic hardware. In a sample instantiation, we
investigate automated training of a neuromorphic trajectory selection module using
reinforcement learning to demonstrate the general feasibility of our approach. We
evaluate our system using the open-source race car simulator TORCS.

1 Introduction
Increasing energy requirements of driver assistance systems and automated driving
functions, oftentimes built upon modern machine learning techniques, demand for new
approaches to satisfy these power demands with limited on-board resources. SNNs
(Spiking Neural Networks) offer an interesting option to tackle this issue when de-
ployed on dedicated, energy-efficient neuromorphic hardware. The authors of [1] show
on the example of image classification using CNNs (Convolutional Neural Networks),
that such networks can effectively be converted to SNNs and that the converted net-
works can be significantly more energy-efficient when run on specialized neuromorphic
hardware with minimal drops in accuracy compared to the original network.
In this paper, we propose a neuromorphic system for vehicle control. Our system is
implemented entirely in a spiking neuron substrate using the Nengo simulator [2] and
is designed to be both distributed and hierarchical. In a sample instantiation, we train
a trajectory selection module using reinforcement learning to investigate the feasibility
of a learnable, neuromorphic control system in an automotive context. This approach
has been selected in order to be decoupled from the quality of training data in this first
investigation. We evaluate our approach in TORCS (The Open Racing Car Simulator),
which allows us to generate training data in a safe and controlled simulation environ-
ment. Furthermore, TORCS offers an advanced vehicle physics simulation as well as a
variety of sensors and actors for interaction [3].

Related work: There exists a large variety of different approaches to autonomously
control a car in TORCS which are either manually engineered or automatically learned
from data. Most hand-crafted methods use pre-defined control behaviors and vary in the
methods to switch between those controllers, e.g. heuristics [4] or finite-state machines
[5]. Oftentimes, these methods are combined with evolutionary or genetic algorithms

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

649

Fig. 1: Proposed distributed neuromorphic architecture utilizing individual modules for
separate control signal calculation.

[6] for parameter optimization.
On the other hand, data-driven approaches for vehicle controllers in TORCS using ei-
ther supervised learning or reinforcement learning are also frequent. Imitation learning
methods try to directly learn control signals from another, either human or artificial,
driver using a feed-forward neural network [7] or an evolutionary network of spiking
Izhikevich neurons [8]. Using reinforcement learning like the asynchronous advantage
actor-critic approach [9] to derive end-to-end control policies from (visual) sensory in-
put avoids the need of other drivers to create training examples.
An example of temporal difference learning in spiking neurons is presented in [10], with
the introduction of dual learning, which solves the issue of spiking networks when a
temporal component is included. Neuromorphic control systems for robot motion and
manipulation using SNNs have been examined (e.g. in [11]).

2 System architecture
The architecture of our proposed system is visualized in Fig. 1. Interactions with the
TORCS environment (for detailed information on the sensor and actuator setup see
[12]) are channeled over several ROS (Robot Operating System) nodes used for the
gateway communication. For evaluation and training purposes, a controller using the
global position and orientation of the vehicle is implemented in ROS to determine con-
trol signals to follow a given trajectory or the roadways centerline at a fixed speed1.

Distributed neuromorphic architecture: The proposed architecture for a learnable
and energy-efficient vehicle control system is a holistic neuromorphic approach for de-
termining steering, gas and brake pedal as well as gear signals. It is a distributed system
in that these signals are calculated separately in different modules. In addition, it is a
hierarchical system as several intermediate values have to be calculated and different
modules and subsystems are dependent upon each other. The modules’ vertical align-
ments within Fig. 1 indicate the distinction of three core subsystems, each responsible
for one of the control signals (gear selection, breaking/acceleration and steering). We

1The TORCS-to-ROS interface can be found at https://github.com/fmirus/torcs ros. The
Nengo and ROS implementation of the trajectory selection module and the framework that is built upon it
can be found at https://github.com/fmirus/torcs neural trajectory ctrl

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

650

https://github.com/fmirus/torcs_ros
https://github.com/fmirus/torcs_neural_trajectory_ctrl

(a) Simplified visualization of the SNN for trajectory selection. The
yellow (A) resp. cyan networks (B) implement action selection resp.
weight optimization for three exemplary trajectory choices

(b) Visualization of a set of ex-
emplary trajectories.

Fig. 2: SNN for trajectory selection and exemplary set of trajectories

envision each of these submodules to be learnable either by supervised or reinforcement
learning. Some of the depicted modules are heavily dependent on each other and will
have to be trained in parallel rather than independently.
In this paper, we focus on the trajectory selection module to be the only learnable mod-
ule for simplicity. Therefore, gear selection and acceleration are determined from the
engine’s rpm and a desired velocity set to a fixed value for now. The trajectory follow-
ing module determines the control values for steering from the chosen trajectory. We
envision the time horizon module to estimate the time window for the next trajectory
to be followed. Assuming a perfect control algorithm and the desired speed to be the
actual speed, this equates to determining the trajectory’s end point’s longitudinal posi-
tion. Accordingly, the trajectory selection module is an action selection module for the
agent to choose a trajectory type as well as the lateral component of the trajectory’s end
point from a set of predefined options.

Trajectory selection module: In this paper, we are focusing on the trajectory selec-
tion isolated from the other modules. Therefore, we use a classical controller to steer
the vehicle along the chosen trajectories at a fixed velocity of 34 kmh−1 with the tra-
jectories’ end points’ longitudinal component set to 20 m which emulates a simplified
version of trajectory following.
We implemented a set of 15 trajectories to describe varying degrees of different be-
haviors (see Fig. 2b). We use straight lines to emulate lane following, cubic splines
(with their derivative set to 0 at the extremities) to model lane change maneuvers and
quadratic interpolations between a start and end point to perform a change in orienta-
tion. The latter trajectories are intended for driving curves or to correct slight misalign-
ments between the vehicle and the road.

3 Neuromorphic reinforcement learning
Learning network: The core of this work is the learning Spiking Neural Network
for trajectory selection, which is visualized in Fig. 2a and consists of two subnetworks.
It was built using the Nengo neural simulator [13], which implements the principles of
the NEF (Neural Engineering Framework) [14]. The NEF provides mathematical tools
to construct biologically plausible, large-scale neural models. Time-varying real-valued

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

651

(a) Training (b) Validation

Fig. 3: Visualization of the chosen training and validation tracks.

vectors can be encoded in the activity of neural populations, i.e. for each neuron within
a group there is a function a(x) that maps a variable x to a neural activity. Expanding on
this idea, we can also approximate functions across connections between populations
of neurons.
The first subnetwork A (yellow components in Fig. 2a) encodes the current state in a
neural population. This population feeds its output to an array of downstream popu-
lations, each representing the utility value Q associated to one of the possible actions.
Unless an exploration step is enforced, the highest filtered utility value determines the
next action to be performed. As we want to adapt the mapping between input (state) and
utility values by learning the respective connection weights, their decoders are initial-
ized to a fixed value. The second subnetwork B (cyan components in Fig. 2a) encodes
the reward received from the environment (cf. eq. 1). From this reward, the offset to
the current utility values is calculated, which in turn is used to adapt the weights of
subnetwork A’s learning connection.

Associative value learning: The associative learning process is implemented using
the PES (Prescribed Error Sensitivity) [13] learning rule, which modifies connection
weights based on a (multi-dimensional) error signal e. We calculate the error from the
reward function

r(t) = |p(t)| β1 · |θ(t)| β2 + |p(t)− p(t −1)| β3 + |θ(t)−θ(t −1)| β4, (1)

where p describes the vehicle’s lateral position along the road at successive time steps
t and t −1 (a value of 1 being centered and 0 being at the track boundary), θ describes
the vehicle’s orientation w.r.t. the road’s centerline (values of 1 resp. 0 indicate parallel
resp. perpendicular alignment) and βk being scalar weights. Thus, the reward function
is designed to blend the two objectives of driving aligned with and centered on the road.
With each ensemble representing a utility value Q(s,a j) of the state s when taking
action a j, we define the error for dimension j as

e j =

{
r(t)−Q(s(t),a j) if a j is selected
0 else.

(2)

For this paper, we have chosen to limit the agent’s knowledge to immediate rewards.
Therefore, we neglect the correlation between the trajectory selection and time horizon
modules, as it will introduce a temporal component to the discretization. Hence, the
training procedure needs to be adjusted once both modules are trained jointly. Naturally,

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

652

Fig. 4: Results (mean reward and lap completion) for three validation runs per episode

such a limited approach will impair the quality of our results. Our goal in this paper,
however, is to show general feasibility of our approach which is why we postpone the
coupling with other distributed modules to future work.

Training procedure: In order to evaluate the derived policy’s performance, we chose
one training and one validation track (Fig. 3) that show similar characteristics in road
width and occurring curvatures. They, therefore, show comparable features while being
distinct enough to identify if a straight mapping to the training track were to happen.
Whenever the vehicle leaves the track during training, the simulation is reset and a re-
ward of 0 is awarded as the track sensors become unreliable in such a scenario. After
every five training runs, three runs until the vehicle goes off-track are driven on the
validation course without updating any weights. This process constitutes one training/-
validation episode.
We use the percentage of completion on the validation track multiplied by the collected
average reward in that validation episode as a measure of reliability performance. This
measure is additionally normalized by the maximally achievable reward for the utilized
parameter set. As the reset leads to a large bias in the experience of states close to
the starting line during training, several cyclic points of interests have been defined up-
front as substitute starting points before which a non-neuromorphic controller handles
the vehicle. This procedure ensures a large exploration of different possible states and
accelerates learning. During training, a lineraly decaying epsilon exploration is utilized.

4 Results
Fig. 4 visualizes the performance of the derived control policy on the validation track
after each episode. The average performance tends to increase, indicating an overall
improvement of the policy given the state values approximated by the SNN. The neu-
romorphic controller is able to reliably complete the validation lap after roughly 35
episodes without having performed any training on it. This indicates that the SNN is
able to learn a meaningful policy and to generalize beyond the training track given the
sensors’ uncertainties.

5 Discussion
Our investigation in this paper shows promise to be a first step in the direction of a neu-
romorphic vehicle control. Although we chose a very limited approach in associative
reinforcement learning, our system is able to fulfill the initial requirement to complete
laps on the unknown validation track. However, tests on other validation tracks revealed
issues with this approach. Successive curves are a problematic situation as the vehicle
manages to pass the first curve but oftentimes maneuvers itself into a position where it
is impossible to complete the second curve with the available trajectories. This problem

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

653

can not be identified timely, and therefore solved with the current approach, as there is
no temporal component in associative reinforcement learning.

Future work: We envision to tackle the temporal issue using Q-learning with dual
learning. Another direction for future work is to couple the trajectory selection with the
time horizon module to enable planning over time while remaining within a discretized
domain and delaying the continuous control to the trajectory following module. These
modules could be trained separately or jointly to evaluate applicability of this more
sophisticated approach.

References
[1] E. Hunsberger and C. Eliasmith. “Training Spiking Deep Networks for Neuromorphic Hardware”.

In: CoRR abs/1611.05141 (2016). arXiv: 1611.05141.

[2] T. Bekolay, J. Bergstra, E. Hunsberger, T. DeWolf, T. Stewart, D. Rasmussen, X. Choo, A. Voelker,
and C. Eliasmith. “Nengo: a Python tool for building large-scale functional brain models”. In: Fron-
tiers in Neuroinformatics 7 (2014), p. 48. ISSN: 1662-5196.

[3] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and A. Sumner. TORCS, The
Open Racing Car Simulator. 2014. URL: http://www.torcs.org.

[4] M. R. Bonyadi, Z. Michalewicz, S. Nallaperuma, and F. Neumann. “Ahura: A Heuristic-Based Racer
for the Open Racing Car Simulator”. In: IEEE Transactions on Computational Intelligence and AI in
Games 9.3 (2017-09), pp. 290–304.

[5] B. H. F. Macedo, G. F. P. Araujo, G. S. Silva, M. C. Crestani, Y. B. Galli, and G. N. Ramos. “Evolv-
ing Finite-State Machines Controllers for the Simulated Car Racing Championship”. In: 2015 14th
Brazilian Symposium on Computer Games and Digital Entertainment (SBGames). 2015-11, pp. 160–
172.

[6] M. Ebner and T. Tiede. “Evolving driving controllers using Genetic Programming”. In: 2009 IEEE
Symposium on Computational Intelligence and Games. 2009-09, pp. 279–286.

[7] L. Cardamone, D. Loiacono, and P. L. Lanzi. “Learning drivers for TORCS through imitation us-
ing supervised methods”. In: 2009 IEEE Symposium on Computational Intelligence and Games.
2009-09, pp. 148–155.

[8] E. Yee and J. Teo. “Evolutionary spiking neural networks as racing car controllers”. In: 2011 11th
International Conference on Hybrid Intelligent Systems (HIS). IEEE, 2011-12, pp. 411–416. DOI:
10.1109/his.2011.6122141.

[9] E. Perot, M. Jaritz, M. Toromanoff, and R. d. Charette. “End-to-End Driving in a Realistic Racing
Game with Deep Reinforcement Learning”. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). 2017-07, pp. 474–475.

[10] D. Rasmussen, A. Voelker, and C. Eliasmith. “A neural model of hierarchical reinforcement learn-
ing”. In: PLOS ONE 12.7 (2017-07), pp. 1–39.

[11] F. Mirus, C. Axenie, T. C. Stewart, and J. Conradt. “Neuromorphic sensorimotor adaptation for
robotic mobile manipulation: From sensing to behaviour”. In: Cognitive Systems Research 50 (2018),
pp. 52–66. ISSN: 1389-0417.

[12] D. Loiacono, A. Prete, P. L. Lanzi, and L. Cardamone. “Learning to overtake in TORCS using simple
reinforcement learning”. In: IEEE Congress on Evolutionary Computation. 2010-07, pp. 1–8.

[13] T. Bekolay, C. Kolbeck, and C. Eliasmith. “Simultaneous unsupervised and supervised learning of
cognitive functions in biologically plausible spiking neural networks”. In: 35th Annual Conference
of the Cognitive Science Society. 2013, pp. 169–174.

[14] C. Eliasmith and C. H. Anderson. Neural Engineering : Computation, Representation, and Dynamics
in Neurobiological Systems. Computational neuroscience. Cambridge, Mass. MIT Press, 2003. ISBN:
0-262-05071-4.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

654

http://arxiv.org/abs/1611.05141
http://www.torcs.org
http://dx.doi.org/10.1109/his.2011.6122141

	Introduction
	System architecture
	Neuromorphic reinforcement learning
	Results
	Discussion

