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Abstract. Predicting future vehicle behaviour is an essential task to enable safe
and situation-aware automated driving. In this paper, we propose to encapsulate
spatial information of multiple objects in a semantic vector-representation. Assum-
ing that future vehicle motion is influenced not only by past positions but also by
the behaviour of other traffic participants, we use this representation as input for a
Long Short-Term Memory (LSTM) network for sequence to sequence prediction
of vehicle positions. We train and evaluate our system on real-world driving data
collected mainly on highways in southern Germany and compare it to other models
for reference.

1 Introduction
Predicting future behaviour and positions of other traffic participants from observations
is a key problem intuitively handled by human drivers, that needs to be solved by au-
tomated vehicles as well to safely navigate their environment and to reach their desired
goal. However, future positions of vehicles not only depend on each vehicle’s own past
positions and dynamic data (e.g. velocity and acceleration) but also on the behaviour of
the other traffic participants in the vehicle’s surroundings.
In this paper, we expand our previous work [1] on an automotive environment model
based on Vector Symbolic Architectures (VSAs) [2]. Here, our main contribution is an
encoding of spatial information for multiple objects in semantic scene vectors of fixed
length. We hypothesize that this structured vector representation will be able to capture
relations and mutual influence between traffic participants. For prediction the vehicle’s
future positions, we train a LSTM network using our vector-representation as well as
other encoding schemes of the input data and compare their performance against each
other as well as against a simple linear model based on a constant velocity assumption.

Related Work: There exist a variety of different approaches for motion prediction in
automotive context [3]. Those methods vary in their approach to prediction (data-driven
or model-based), the complexity of their motion model and also how they account for
interactions between traffic participants or, more generally, agents in the scene. Proba-
bilistic models like costmaps [4] impose physical constraints on the movements, other
approaches categorize and represent scenes in a hierarchy [5], model interactions in the
learning network’s architecture [6] or include distances between other agents and the
target directly in the training data [7].
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Fig. 1: Data visualization of one driving situation example. The red dot indicates the
position of the ego vehicle, blue and orange lines show past and future motion of the
target vehicle whereas gray lines depict the other vehicles’ motion.

2 Methods
Data and Preprocessing: In this work, we use real-world data gathered during test
drives mainly on highways in southern Germany. The data contains object-lists with a
variety of features obtained from different sensor sources. Apart from features about
motion and behaviour of the dynamic objects in the scene like position, velocity and
acceleration, which are estimated from Light Detection and Ranging (LIDAR) sensors,
there is also visual information like object type probabilities or lane information, which
is acquired from additional camera sensors.
We aim to predict future positions of dynamic objects 5 s into the future based on their
positions 5 s prior to their current location. To improve consistency and applicability,
we interpolate the available data over 20 equidistant steps to achieve intervals of 0.25 s
(see fig. 1). Finally, to improve suitability of the data as input for neural networks, we
divide all x-positions by a factor of 10 such that x-/y-values are scaled to a similar order
of magnitude. We created two data-sets, D1 (102 vehicles) and D2 (3891 vehicles),
containing roughly 20 min and 10 h of driving data respectively for rapid and more in-
depth training and evaluation with D1 �D2. We split both data-sets into training Ti ⊂Di
and validation data Vi ⊂ Di containing 90 % and 10 % of the objects respectively with
Ti ∩Vi =∅ to avoid testing the system on vehicles it has been trained with.

Convolutive vector-power: The Semantic Pointer Architecture (SPA) [8] is based
on Plate’s Holographic Reduced Representations (HRRs) [9], which is one special case
of a Vector Symbolic Architecture [2]. Here, atomic vectors are picked from the real-
valued unit sphere, the dot product serves as a measure of similarity and the algebraic
operations are component-wise vector addition ⊕ and circular convolution ⊗. In this
work, we make use of the fact that for any two vectors v,w, we can write

v⊗w = IDFT (DFT (v)�DFT (w)) , (1)

where � denotes element-wise multiplication, DFT and IDFT denote the Discrete Fourier
Transform and Inverse Discrete Fourier Transform respectively.
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Fig. 2: Visualization of the convolutive vector-power representation over time as a heat
map. The red circles indicate the measured position of the target vehicle.

Using eq. 1, we define the convolutive power of a vector v by an exponent p ∈ R as

vp := ℜ
(

IDFT
(
(DFTj (v)p)

D−1
j=0

))
, (2)

where ℜ denotes the real part of a complex number. Furthermore, we call a vector u
unitary, if ‖v‖= ‖v⊗u‖ for any other v (see [9, Sec. 3.6.3 and 3.6.5] for more details
on the convolutive power and unitary vectors).

Vector representation: In this paper, we adopt and improve the vector representation
for automotive scenes introduced in earlier work [1]. Here, we focus on investigating
the expressive power of encoding spatial positions using the convolutive vector-power
introduced in eq. 2. We assign a random ID-vector to each category of dynamic ob-
jects (e.g. car, motorcycle, truck) as well as random unitary vectors X and Y to encode
spatial positions. Given a situation as shown in fig. 1 with a sequence of prior posi-
tions (xt ,yt) for the target vehicle at time step t ∈ {t0, . . . , tN} and equivalent sequences
(xob j,t ,yob j,t) for all other visible objects closer than 40 m to the target, we encapsulate
this information in a scene vector

St = THIS⊗TYPEtarget ⊗Xxt ⊗Yyt ⊕∑
ob j

TYPEob j ⊗Xxob j,t ⊗Yyob j,t , (3)

where THIS denotes an additional ID-vector chosen at random to indicate the target
object to be predicted. We use the 40 m threshold to avoid accumulation of noise in
the vectors while focusing on the objects most relevant for prediction. This yields a
sequence of scene vectors St for t ∈ {t0, . . . , tN} encoding the past spatial development
of objects of interest in the current driving situation. Fig. 2 depicts the aforementioned
scene vector representation: the left plot shows similarities (depicted as heat map) be-
tween the vector St encoding the scene from fig. 1 and v = THIS⊗TYPEtarget ⊗Xx̄i ⊗
Yȳt , with a set of discrete position samples x̄i, ȳi. Similarly, the right plot shows similar-
ities between St and CAR⊗Xx̄i ⊗Yȳt visualizing all other objects in the scene of type
car. Thus, we can encode spatial information of several different objects in a sequence
of semantic vectors and reliably decode it back out. This allows us to encode automo-
tive scenes with varying number of dynamic objects in a vector representation of fixed
dimensionality.
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Fig. 3: Visualization of our learning architecture. Modules that change with varying
encoding of the input data are highlighted through dashed red borders.

Network architecture and training: In this work, we use a Long Short-Term Mem-
ory (LSTM) [10] network-architecture consisting of one LSTM encoder and decoder
cell with 150 hidden states each, for sequence to sequence prediction of vehicle po-
sitions. We use a similar network for all encoding schemes, whereas only the input
dimensionality of the encoder cell changes when varying the representation of the input
data. Fig. 3 visualizes this architecture indicating changing modules by a dashed red
border. We use a batch-size of 150 and train the networks for 10 epochs on T1 and for
20 epochs on the T2 training data set.

3 Experiments
Reference encodings: For evaluation purposes, we also use different, simpler en-
coding schemes of our input data to compare our approach against. For a simple vector
representation, we add the positional vectors X and Y scaled with the target vehicle’s
prior positions (xt ,yt) at each time step t, yielding the sequence S̃t = xt ·X+ yt ·Y. Fi-
nally, we also use the numerical position values pt =(xt ,yt) as input data. Therefore, we
have three different instantiations of the input data (St)

tN
t0 , (S̃t)

tN
t0 and (pt)

tN
t0 , which we

refer to as ”SPA-power”, ”SPA-simple” and ”numerical”. Both ”SPA”-representations
use 512-dimensional vectors. Note, that only the SPA-power representation (St)

tN
t0 con-

tains positional information about vehicles other than the target.

Results: Fig. 4 visualizes the Root-Mean-Square Error (RMSE) of all approaches
on both validation-sets V1 and V2 for each dimension. Fig. 4a and 4c show the perfor-
mance on the complete validation-set, whereas fig. 4b and 4d show only situations with
at least 3 other vehicles present, the distance between the target and the ego vehicle
being lower than 20 m and the distance between the target and the closest other vehicle
being less than 10 m. We observe that all approaches yield comparable results with no-
table differences in certain situations. Although the SPA-power encoding scheme tends
to perform worse in x-direction (longitudinal), we observe that it performs better in y-
direction (lateral) in crowded situations with closely driving vehicles. Remarkably, the
SPA-power representation performs best in y-direction in such situations when trained
on the smaller data set T1 (fig. 4b) and second best on validation set V2 (fig. 4d).
To further investigate these results, we evaluated certain metrics, chosen to identify
crowded and potentially dangerous situations, for items in both validation-sets, where
the SPA-power approach outperforms all other approaches with respect to the RMSE
in y-direction (see fig. 5). We observe that the ratio of situations, where the distance
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(a) Validation-set V1 complete (b) Validation-set V1 subset

(c) Validation-set V2 complete (d) Validation-set V2 subset

Fig. 4: RMSE evaluation in x and y-direction (left and right plot in all sub-figures) for
the complete validation-sets (4a, 4c) and situations with at least 3 other vehicles present
and distance between the target and ego vehicle lower than 20 m and between target and
closest other vehicle lower than 10 m (4b, 4d).

Fig. 5: Metric evaluation based on the RMSE in y-direction regarding situations where
the model using SPA-power representation outperforms all other approaches.

between the target and the ego vehicle and/or the closest other object being small is sig-
nificantly higher when the SPA-power representation outperforms all other approaches.
Furthermore, the ratio of situations with at least 3 other vehicles present is also higher.

4 Discussion
Conclusion: In this paper, we showed a novel approach to encapsulate spatial infor-
mation of multiple objects in a sequence of semantic pointers of fixed vector length.
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We used a LSTM network, to predict future vehicle positions from this representation.
Our system clearly outperforms the simple linear model in y-direction and shows an
comparable performance in y-direction and slightly worse performance in x-direction
to benchmark-LSTMs using simpler input encodings. However, the results indicate
that our approach gives improvements in crowded driving situations, where the target
is close to the ego and/or other vehicles. We consider reliable predictions in such situa-
tions to be of crucial importance for collision avoidance and thus safe motion planning.
Although this hints that the proposed SPA-power representation is actually able to cap-
ture mutual influence between vehicles, the results still demand further investigation.

Future work: We aim to analyze the results achieved in this paper in more detail
through e.g. other partitions or subsets of the data-sets, tuning of the LSTM’s hyper-
parameters as well as potential improvements of the vector representation itself. Apart
from that, the performance of our approach, especially in potentially dangerous driv-
ing situations, encourages us to extend and improve our system. We envision a future
online-learning system, which chooses at runtime between several available predictors
depending on the current driving situation to achieve the best possible forecast.
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