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Abstract. Due to their high computational complexity, deep neural net-
works are still limited to powerful processing units. To promote a reduced
model complexity by dint of low-bit fixed-point quantization, we propose
a gradient-based optimization strategy to generate a symmetric mixture of
Gaussian modes (SGM) where each mode belongs to a particular quanti-
zation stage. We achieve 2-bit state-of-the-art performance and illustrate
the model’s ability for self-dependent weight adaptation during training.

1 Introduction

Deep architectures with stacked non-linearities have highly pushed the progress
of machine learning in the recent past. In this context, deep neural networks
(DNNs) have set benchmarks in various fields of research, such as computer
vision, speech recognition and image classification [1]. However, depending on
millions of parameters and billions of high-precision computations [2, 3], DNNs
require powerful and expensive processing units.
To address the problem of complexity, strict weight compression techniques us-
ing two bit [4, 5, 6] or even one bit [7, 6] have been developed. This reduces
storage costs significantly and replaces floating-point multiplications by addi-
tions. However, most quantization functions keep high-precision scaling coeffi-
cients [4, 5, 6, 8], which eliminates the posibility of pure fixed-point arithmetic
on dedicated hardware. In addition, incremental retraining steps, like weight
partitioning [6, 8], complicate the training procedure and involve additional hy-
perparameters.
We propose a gradient-based optimization strategy to train DNNs with multi-
modal weight distributions that enable accurate post-quantization. While using
pure fixed-point quantization, self-reliant weight adaptation makes retraining
unnecessary. The loss function is easy to implement and achieves state-of-the-
art performance using ternary weights (6.19% on CIFAR-10).

2 Related Work

Hard quantization methods use discrete weights in at least parts of the network
flow to minimize the loss pertubation that is caused by quantization. In 2015,
Courbariaux et al. combined weight binarization (wbin

i ∈ {−1, 1}) and backprop-
agation [7]. While quantizing during forward and backward pass, high-precision
weights are kept and updated subsequently. Doing so, the training with gra-
dient descent converges. Li et al. increased the model capacity by combining
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Fig. 1: Left(a): Weight distributions consisting of symmetric Gaussian modes.
The corresponding variances result from different values of the regularization
parameter λ. Right(b): Dedicated N = 3bit quantizer with uniform stepsize ∆.

ternary-valued weights and a scaling coefficient α, wter
i ∈ {−α, 0, α} [4]. To find

an optimal value for α, the euclidean distance between W and Wter is approx-
imated and solved with a threshold based ternary function. A straight forward
extension was introduced by Zhou et al. by using two independent scaling fac-
tors wter

i ∈ {−α
n, 0, αp} and gradients to update both the continuous weights w

and the scaling coefficients αn and αp [5].
Soft quantization describes a training with real-valued weights, promoting pos-
terior distributions that are well-suited for post-quantization. In this context,
Bayesian methods have been used for model compression with the objective of
sparse posterior distributions [9, 10]. Recently, Achterhold et al. introduced
a quantizing prior to train DNNs with multimodal weight distributions that
can be quantized with little loss in accuracy using ternary-valued weights [11].
Furthermore, Zhou et al. launched a loss-error-aware quantization method for
determinsistic low bit DNNs [6]. Their key feature is to partition the layer
weights in several steps, quantizing only one part while retraining the rest.
In order to omit high-precision scaling coefficients and retraining, we propose a
single shot gradient based optimization strategy to train network weights that
fit pure fixed-point arithmetic. We show that our model is a composition of sym-
metric Gaussian modes where the amount of modes and their particular variance
can be regulated as required, see Figure 1(a).
Very recent work on arXiv [12] also describes the regularization of quantized
weights. However, we introduce a reasonable layer-dependent gradient scale and
demonstrate its benefit on weight adaptation.

3 Multimodal Fixed-point Weights

Initially, we illustrate the connection between symmetric quantization functions
and fixed-point numbers and propose a suitable optimization strategy after-
wards. We analyze the gradient behavior, explain differences to related work [6]
and highlight the relation to L2 regularization.
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3.1 Bit Shift Quantization

The representation of an N -bit fixed-point number is (−1)s ×m × 2−f , where
(−1)s×m is the signed integer mantissa, f ∈ Z the position of the decimal point
and 2−f the global scaling factor [13]. This means that a scaling by a power of
two is equivalent to moving the decimal point respectively. To exploit the bit

shift, we use the following symmetric and uniform quantization structure

xq = QN(x; ∆) = Clip
(⌊ x

∆

⌉

, −2N−1 + 1, 2N−1 − 1
)

︸ ︷︷ ︸

N-bit signed integer

∆ (1)

where ⌊·⌉ describes the rounding to the closest integer, ∆ is the uniform step
size, Clip(x, min, max) truncates all values to the domain [min, max] and xq

represents the quantized value. As an example, Q3 is visualized in Figure 1(b).
We see that Equation 1 corresponds to the fixed-point representation if and only
if the step size is a power of two, hence ∆ = 2−f , f ∈ Z. In that case, xq can
be stored as N -bit fixed point number without loss in accuracy.

3.2 Symmetric & Multimodal Gaussian Prior

DNNs are commonly trained by minimizing a loss function L via gradient descent
and backpropagation. To influence the resulting weight distribution, L can be
amplified by a regularization LR. In that case, one updates a single weight value
wi in the negative direction of both gradients, scaled by the learning rate η

wi ← wi − η

(
∂L

∂wi

+
∂LR
∂wi

)

. (2)

L2 regularization is frequently used to give a Gaussian prior on the network
weights and to prevent high filter energies [14]. In order to combine multiple
Gaussian modes and the bit shift quantizer, we propose

LR =

L∑

l=1

M(l)
∑

i=1

λ

M (l)
L2

(

w
(l)
i −QN (w

(l)
i ; ∆(l))

)

=

L∑

l=1

M(l)
∑

i=1

λ

2M (l)

(

w
(l)
i − w

(l)
i,q

)2

where L is the number of layers, M (l) the number of weights in layer l, ∆(l) =

2−f(l)

the step size in layer l, and λ the regularization parameter. The quantized

version of w
(l)
i is called w

(l)
i,q . The gradient respective w

(l)
i is

∂LR

∂w
(l)
i

=
λ

M (l)

(

w
(l)
i − w

(l)
i,q

)
(

1−
∂w

(l)
i,q

∂w
(l)
i

)

=

{

±∞ if w
(l)
i = (k + 1

2 )∆
(l)

λ/M (l)(w
(l)
i − w

(l)
i,q) else,

(3)

where ∂w
(l)
i,q/∂w

(l)
i is zero except between neighboring stages (see Figure 1(b)).

The singularity can be neglected due to real-valued layer weights. This property
is beneficial since QN does not have to be smooth and can, however, ensure that
a fixed-point representation is pursued.
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The quantizing gradient used in [6] is a sign function scaled by a constant param-
eter. This is intuitively unqualified for convergence since each weight is updated
with the same step size and needs to be fixed manually at the quantization
stage. In contrast, our gradient supports self-supervised convergence. Further-
more, [6] applies incremental retraining steps in both dimensions (network width
and depth) to repair the resulting accuracy degradation. We use the layer wise
mean and scale the gradient with λ/M (l) to rate the quantization error of indi-
vidual layers equally. Doing so, layers with many weights, which are more robust
against quantization noise, can be provided with greater flexibility to compen-
sate the overall compression loss. Applying layer-dependent gradient scales is a
novel feature and proves to be necessary for self-reliant weight adaptation.

4 Experiments and Analysis

We compare our Symmetric Gaussian Mixture (SGM) with state-of-the-art
weight compression results from BinnaryConnect (BC [7]), Ternary Weight Net-
works (TWN [4]), Trained Ternary Quantization (TTQ [5]), Explicit Loss-Error-
Aware Quantization (ELQ [6]) and Variational Network Quantization (VNQ
[11]). We use the same pre-processing steps and equal or smaller network archi-
tectures as in [4, 7, 5, 6, 11]. The regularization parameter λ is chosen empirically
using the training set. A suitable value for ∆(l) can be determined by minimizing
LR either in the early stages of training or based on pretrained network weights.
FP indicates if the quantizer uses fixed-point arithmetic.

4.1 LeNet-5 on MNIST

Bits Error FP
BC 1 1.29% ✓

TWN 2 0.65% ✗

VNQ 2 0.73% ✗

SGM 2 0.63% ✓

Table 1: Test error on MNIST.

MNIST is a handwritten-digits classification
task with 28×28 gray scale images divided
into 50,000 training and 10,000 test samples
[15]. We use LeNet-5 [16, 11] and initialize
our network with pretrained weights (0.7%
test error). We use SGD optimization for 80
epochs in combination with a batch size of 64.
The learning rate is linearly decreased from 0.01 to 0.001, λ increases from 0 to
1000. Results are shown in Table 1. Our SGM approach yields state-of-the-art
performance, while using pure fixed-point quantization.

4.2 DenseNet & VGG-7 on CIFAR-10

CIFAR-10 is an image classification benchmark data set, consisting of 32×32
RGB pictures with 50,000 training and 10,000 test samples [17]. For reliable
comparisons, we use two different network architectures. First, a conventional
CNN with seven layers called VGG-7 [4], second DenseNet (L = 76, k = 12)
which has an optimized architecture with comparatively less parameters [18].
Both networks are initialized with pretrained weights (VGG-7: Error 6.12%,
DenseNet: Error 5.68%) and optimized for 250 epochs using SGD optimization
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Fig. 2: Weight distribution of Conv5 (VGG-7, CIFAR-10) for several epochs.

and a batch size of 64. The learning rate is initialized with 0.02 and linearly
decreased to 0.002 while λ rises fro 0 to 2000. Results are shown in Table 2.
VGG-7: Compared to [4, 7] our method improves the performance significantly
with an error rate of 6.27%. To analyze the result, Figure 2 shows the weight
distribution of Conv5 for several epochs. In addition, Figure 3 illustrates the
percentage of weights that switch between single modes at intervals of 10 epochs
for different layers. Though the formation to individual modes looks fairly ad-
vanced, 29.6 % of the layer weights in Conv5 switch to different clusters between
epoch 110 and 130. At this point, convergence seems to be already completed,
but 10.5% of the weights still change their fixed-point mode until epoch 160.
While adaptation in the first and the last layer is largely done at the beginning of
the training, the powerful intermediate layers keep their self-reliant weight adap-
tation till the end. In case of layer-independant gardient scales (as in [6, 12]),
the 2-bit test error of VGG-7 is about 8%.
DenseNet: Our DenseNet outperforms VNQ-DenseNet and performs slitghly
better than ResNet56 [5, 6] while [6] uses 448 loops of weight-partitioning and
retraining to adapt the network weights. To check the flexibility of our method,
we repeat the experiment with exactly the same settings and a bit size of 4. The
resulting test error of 4.98% clearly outperforms the baseline of 5.68%.
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Fig. 3: Ratio of weights switching
to different modes (VGG-7).

Model (Params) Error FP
BC VGG-8 (14M) 9.90% ✓

TWN VGG-7 (12M) 7.44% ✗

SGM VGG-7 (12M) 6.27% ✓

TTQ ResNet56 (0.85M) 6.44% ✗

ELQ ResNet56 (0.85M) 6.30% ✗

VNQ DenseNet (0.49M) 8.83% ✗

SGM DenseNet (0.49M) 6.19% ✓

Table 2: Test error using 1-bit (BC) & 2-
bit (rest) on CIFAR-10.
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5 Conclusion

We have proposed an extension of the Gaussian prior for multiple fixed-point
modes and address two common problems in weight quantization, namely high-
precision scaling coefficients and incremental retraining steps. In multiple ex-
periments, we illustrate the benefit of our layer-dependent gradient strategy and
demonstrate state-of-the-art performance using ternary-valued weights.
Acknowledgement: We thank our colleagues Jasmin Ebert, Matthias Rath
and Mark Schöne for their valuable input.
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