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Shaon Sutradhar1,2, José Rouco1,2, Marcos Ortega1,2 ∗

1- CITIC - Research Center of Information and Communication Technology,
University of A Coruña, Spain

2- Department of Computer Science, University of A Coruña, Spain

Abstract. The development of computer-aided screening (CAS) systems
is motivated by the high prevalence and severity of the target disease along
with the time taken to manually assess each case. This is the case with
diabetic retinopathy screening, that is based on the manual grading of
retinography images. The development of CAS systems, however, usually
involves data-driven approaches that require extensive and usually scarce
manually labeled datasets. With this in mind, we propose the use of un-
supervised anomaly detection methods for screening that can take advan-
tage of the large amount of healthy cases available. Concretely, we focus
on reconstruction-based anomaly detection methods, which are usually
approached with autoencoders. We propose a new network architecture,
the Blind-Spot Network, that, according to the presented experiments,
improves the performance of autoencoders in this setting.

1 Introduction

The retina is composed of specialized neurons and cells that are connected to the
visual cortex making it an extension of the brain and the unique organ in human
body allowing the analysis of the central nervous system with non-invasive meth-
ods [1]. The retina contains metabolically active tissues irrigated with blood
vessels. Thus several chronic diseases, such as diabetes, stroke, hypertension,
along with neurodegenerative and cardiovascular diseases [1], leave significant
biomarkers on the retina. This allows these diseases to be prognosed using the
retinal information, and potentially in far advance to their development.

Diabetes has a high risk of developing into diabetic eye diseases like diabetic
retinopathy (DR) or diabetic macular edema (DME). These are the most com-
mon causes of blindness among the working-age people in the developed coun-
tries [2]. A systematic screening program can, however, significantly minimize
the risk of vision loss through the early detection of DR and DME symptoms,
which would allow an early intervention to prevent visual impairment [3].

In a typical DR screening program, highly skilled experts manually analyze
the retinal fundus images to grade the progression of the disease. Such manual
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grading is a subjective and time-consuming process [3]. Also, with the increasing
prevalence of DR, this manual approach may not meet the demand.

Computer-aided screening (CAS) systems can automate the retinal image
assessment to provide a fast and repeatable process. The development of such
systems for DR screening has been a developing research area in the last three
decades [4]. Many of the existing approaches employ machine learning algo-
rithms for the automatic grading of DR. These data-driven procedures usually
require manually annotated retinal image dataset for training [4]. However,
there is scarcity of large datasets with annotated lesions, because manual label-
ing is a time consuming and tedious task that requires the intervention of expert
clinicians. This motivates the development of unsupervised learning techniques
that can take advantage of the existent unlabeled data. Furthermore, some rare
pathologies may lack sufficient data to represent their whole variability in a rep-
resentative way, even using the unlabeled data. This further motivates the use
of unsupervised anomaly detection approaches that allow the recognition of any
pattern that diverges from the healthy cases.

Anomaly detection methods have been applied to video surveillance, cyber-
security, disease recognition in medical imaging and among others [5, 6]. In image
data, it usually refers to the detection of abnormal local regions or objects. Ma-
chine learning techniques, with both supervised and unsupervised methods, are
extensively applied in image anomaly detection [5]. Unsupervised anomaly de-
tection methods typically involve learning the appearance of normal structures
in order to identify the anomalous data which do not fit to the learned model.
This approach is practical when a large dataset of normal cases is available,
while there is insufficient representation of abnormal cases. Some frequently
used unsupervised anomaly detection methods include one-class support vector
machine (OC-SVM) [7], autoencoders (AEs) [8] and their variants [9] or gener-
ative adversarial networks (GAN) [10].

In the work herein described we employ the concept of reconstruction-based
unsupervised anomaly detection for screening. This is usually approached with
AEs [11] and, to the best of our knowledge, it has not been used before for DR
screening. Additionally, we propose a new network architecture, the Blind-Spot
Network, as an alternative to AEs, in this setting. The provided experimental
results demonstrate the advantage of the BSNet against AEs.

2 Methods

A scheme of the proposed screening system is shown in Fig 1. The system is a
reconstructor-based anomaly detection method which consists of an image re-
constructor model that is trained to minimize the reconstruction error of normal
data. It is assumed that the model will not reconstruct the anomalous data sam-
ples as accurately as normal data and thus will produce a higher reconstruction
error. Therefore, the error could be used to decide if the input sample is normal
or not. This screening method should be general enough to cover a wide variety
of diseases, although, in this paper, we only experiment with DR.
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Fig. 1: Proposed image anomaly detection method for screening. The reconstructor is
trained on healthy images obtaining lower reconstruction error than pathological ones.

Autoencoders are usually used for reconstruction based anomaly detection
[8], and we tested them as a first approach. An autoencoder [12] transforms the
high dimensional input data into a lower dimensional representation which is
then transformed back to the original input dimension. Our experiments, how-
ever, evidenced that autoencoders do not efficiently learn meaningful semantic
features of the input distribution and tend to add a blurring to the reconstructed
output. This means that the features learned from normal images are general
enough to encode and reconstruct the pathological patterns with equally low er-
ror. This motivates the proposal of alternative approaches that could add more
pressure to learn higher level features. To that end, we propose a new architec-
ture, the Blind-Spot Network (BSNet), that instead of having equal input and
output, the target output is not available at the input. Thus the network is
‘blind’ to the target part of its input region, and forced to interpolate this ‘blind
spot’ from its surrounding context only.

2.1 Blind-Spot Network Architecture

Given patch of 96×96 pixels, the BSNet first divides it into 9 equal 32×32 sub-
patches, as illustrated Fig. 2(a). The BSNet takes the 8 boundary segments
as inputs and the middle segment as the target output. Each input segment
is precessed separately with independent convolutional neural networks, whose
outputs are concatenated and fed into a common fully-connected network that
generates the target center patch. The architecture is depicted in Fig. 2(b).
This network is similar to context encoders [13], however, in this case, instead
of masking an area of the input image, the network architecture is designed to
take the patch surroundings as input and to predict the unseen middle region.

The activation function of the output layer is linear, while the rest of the
layers use ReLU. The loss function is mean absolute error (MAE). The network
is initialized following the Glorot [14] method and the optimization algorithm
is Adam [15] with learning rate 1e-5. Early stopping with minimum change in
validation loss of 1e-7 and 500 epochs of patience is used.

3 Results and Discussion

In the experiments we use the public Messidor database [16]. The database
consists of 1200 color fundus images with three different image sizes. In the pre-
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Fig. 2: The Blind-Spot Network architecture. (a) Illustration of the patch segmenta-
tion process. (b) The neural structure.

liminary experiments herein described we only use the 1488×2240 sized images.
For each image, the DR grade (0 to 3) is provided. A total of 546 images are
classified as normal and 654 as having different grades of DR. 27 normal images
are used to prepare the training dataset. Manually selected 13900 target points,
covering the macula, optic disk and blood vessel regions, are used to extract
patches centered on them. We extract patches of three different sizes (96×96,
144×144 and 48×48 pixels) from each point. For augmentation, we rotate the
96×96 patches with 90o, 180o and 270o angles and scale the 144×144 and 48×48
patches with 0.5 and 1.5 factors respectively. A total of 83400 patches are gener-
ated with the above mentioned augmentation. An additional validation dataset
of 3135 normal patches is generated with a similar extraction procedure from 13
randomly selected normal images. Finally, a test dataset of pathological patches
is collected with additional care so that each patch contains some portion of
a lesion. We randomly select 26 pathological (abnormal) images and extract
398 patches. The patches of the three sets are converted into gray-scale, and
normalized between 0 and 1.

We compare the proposed BSNet model with a plain fully-connected AE.
Several AE architectures have been tested achieving similar reults. The best
performance was obtained with a fully-connected AE with three hidden layers
of 4096, 2048, 4096 ReLU neurons, and linear output. The used initialization
and training methodology is the same as with the BSNet.

Fig. 3 depicts examples of reconstructed patches using both the BSNet and
AE approaches. It can be observed that the AE model is able to similarly recon-
struct both the healthy and pathological patches, while the BSNet demonstrates
different performance on both classes. To quantitatively evaluate the quality of
reconstructed images we use MAE. In Fig. 4 we plot the histogram of error
distributions for the train, validation and test data. Additionally, we fit the
three error distributions to Gaussians by computing the means and standard
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(a) (b)

Fig. 3: Reconstruction examples of unseen healthy (a) and pathological (b)
patches. Each line contains the input patch, and the AE and BSNet outputs.

(a) (b) (c) (d)

Fig. 4: Comparison of reconstruction error histograms and Gaussian distribu-
tions. (a,b) AE reconstructor. (c,d) BSNet reconstructor.

deviations. It is observed that, for the AE, the error distributions of the valida-
tion set, i.e. unseen healthy patches, and the test set, i.e. pathological patches,
are highly overlapped. These distributions, however, are clearly separated for
the BSNet. To quantitatively asses the separability of the distributions we use
Mahalanobis distance, defined as:

M(A,B) =

√
(µA − µB)2

σ2
A + σ2

B

(1)

where A and B denote two different distribution with averages µA and µB and
standard deviations of σA and σB , respectively. Table 1 shows the obtained
values, confirming that the reconstruction error distributions of unseen healthy
and pathological cases are more separable for the BSNet than for the AE.

4 Conclusions

In this paper we have introduced a DR screening system employing an image
reconstruction based anomaly detection approach. Using this concept, we tested
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Table 1: Mahalanobis distance between error distributions.

Reconstructors Test-Train Test-Validation

AE 0.7614 0.1736
BSNet 1.0116 0.8664

AEs and compared the results with a newly proposed architecture, the Blind-
Spot Network (BSNet). Our preliminary experiments show that the BSNet
performs significantly better than AEs.
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[10] T. Schlegl, P. Seeböck, S.M. Waldstein, et al. Unsupervised anomaly detection with
generative adversarial networks to guide marker discovery. In International Conference
on Information Processing in Medical Imaging, pages 146–157. Springer, 2017.

[11] S. Hawkins, H. He, G. Williams, et al. Outlier detection using replicator neural networks.
In Data Warehousing and Knowledge Discovery, 4th International Conference, DaWaK
2002, Aix-en-Provence, France, September 4-6, 2002, Proceedings, pages 170–180, 2002.

[12] G.E. Hinton. Reducing the dimensionality of data with neural networks. Science,
313(5786):504–507, jul 2006.

[13] D. Pathak, P. Krahenbuhl, J. Donahue, et al. Context encoders: Feature learning by
inpainting. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2536–2544, 2016.

[14] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[15] D.P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR), 2015.
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