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Abstract. In this paper, we consider classification models involving
multilayer perceptrons (MLP) with rectified linear (ReLU) functions for
activation units. It is a difficult task to study the statistical properties of
such models. The main reason is that in practice these models may be
heavily overparameterized. We study the asymptotic behavior of the dif-
ference between the loss function of estimated models and the loss function
of the theoretical best model. These theoretical results give us information
on the overfitting properties of such models. Some simulations illustrate
our theoretical finding and raise new questions.

1 Introduction

Feed-forward neural networks or are well known and popular tools (see Lecun et
al. [2]). However, few theoretical results are available about such models, and
we propose in this paper to study the overfitting of one hidden layer MLP with
ReLU activation functions for classification purpose. We establish an asymptotic
result which generalizes the result obtained in the regression framework (see
Rynkiewicz [5]). Moreover, these results are complementary to some recent
non-asymptotic results (see Neyshabur et al. [3]) where increasing the number
of hidden unit may reduce the overfitting. This paper is organized as follows:
Firstly, under suitable conditions, we provide the asymptotic distribution for the
likelihood ratio test statistic of the estimated model and the best one. This result
is general because it holds even if the model is not identifiable which is the case for
over-parameterized MLP. Then we study on some simulations the overtraining
of MLP, and we compare the asymptotic and non-asymptotic framework. Our
results shed new light on the overfitting behavior of MLP models.

2 The model

Let x be an observation in Rd, and let us write the d-dimensional vector of
weights wki := (wki1, · · · , wkid)

T
, then an MLP function with H hidden units

and K outputs can be written:

fθ(x) = (fθ1(x), · · · , fθK(x))
T

=

(
βk +

H∑
i=1

akiφ
(
bki + wki

Tx
))

1≤k≤K

with

θ = (β1, · · · , βK , a11, · · · , aKH , b11, · · · , bKH , w11, · · · , wKH) ∈ R(2H+1+H×d)×K
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the parameter vector of the model. Let us denote Θ the set of possible param-
eters. The transfer function φ will be assumed to be a ReLU function: φ(z) =
max(0, z) for z ∈ R. We observe a random sample of independent and identically
distributed random vectors: (X1, Y1), · · · , (Xn, Yn), from the distribution P of
a vector (X,Y ), with Y a categorical random variable, Y ∈ {1, · · · ,K}. The
classification model can be written as:

P (Y = k|X) =
exp(f0

k (X))∑K
l=1 exp(f0

l (X))
(1)

where

f0 =
(
f0

1 , · · · , f0
K

)T
=

β0
k +

H0∑
i=1

a0
kiφ

(
b0ki + w0

ki

T
x
)

1≤k≤K

(2)

is the best classification function. Since the variable Y is categorical the function
f0 exists and is unique. We assume that a minimal MLP, with H0 number of
hidden units, exists and realizes the best function f0. Let us write 1k(y) the
indicator function of the class k: 1k(y) = 1 if y = k, and 1k(y) = 0 if y 6= k,
then

f0 = arg min
θ∈Θ

E

(
−

K∑
k=1

1k(Y ) log

(
exp(fθk(X))∑K
l=1 exp(fθl(X))

))
,

where the expectation E (f(X,Y )) =
∫
f(x, y)dP (x, y)) is taken under the law

P of (X,Y ). Hence, the function f0 minimizes the theoretical negative log-
likelihood or the multiclass cross entropy. Let us write Θ0 the set of parameters
realizing the best function f0: ∀θ ∈ Θ0, fθ = f0. Note that we do not assume
that Θ0 is a finite set which means that loss of identifiability can occur, this is
the case if the MLP has redundant hidden units (see Fukumizu [1] or Rynkiewicz
[4]). The conditional probability function for a parameter θ will be:

gθ(x, y) =
K∑
k=1

1k(y) log

(
exp(fθk(x))∑K
l=1 exp(fθl(x))

)
. (3)

For an observed sample (x1, y1), · · · , (xn, yn), a natural estimator of f0 is the
Maximum Likelihood Estimator (MLE) fθ̂ that minimizes the negative log-
likelihood:

fθ̂ = arg min
θ∈Θ
−

n∑
i=1

gθ(xi, yi) (4)

Let us introduce some assumptions:

H-1: Let fθ, θ ∈ Θ be MLP functions with H hidden units. We assume that
Θ is a closed and bounded set and the set of parameters Θ0, realizing the
best function f0 is assumed to be a subset of the interior of Θ.
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H-2: The explicative random vector X admits a strictly positive density with
respect to the Lebesgue measure of Rd and P (|X|2) <∞.

Under H-1 fθ̂ converges to the function f0: fθ̂
a.s.−→ f0. To assess the asymp-

totic behavior of this convergence we can study the difference between the log-
likelihood of fθ̂ and the log-likehood for the best function f0, this is done in the
next section.

3 The likelihood ratio test statistic (LRTS)

Let us denote by

g0(x, y) =
K∑
k=1

1k(yi) log

(
exp(f0

k (x))∑K
l=1 exp(f0

l (x))

)
(5)

the true conditional probability function, the likelihood ratio test statistic (LRTS)
will be:

n∑
i=1

gθ̂(xi, yi)−
n∑
i=1

g0(xi, yi). (6)

3.1 Asymptotic behavior of the LRTS

Under assumptions H-1 and H-2, following the same line than Rynkiewicz [4],
[5], we can then prove the following theorem:

Theorem 3.1 Let the map Ω : L2(P )→ L2(P ) be defined as Ω(f) = f
‖f‖2 , and

IR+ be the indicator function of R+. Under the assumptions H-1 and H-2, a
centered Gaussian process {W (s), s ∈ S} with continuous sample paths and a
covariance kernel P (W (s1)W (s2)) = P (s1s2) exists so that

lim
n→∞

sup
θ∈Θ

n∑
i=1

gθ(Xi, Yi)−
n∑
i=1

g0(Xi, Yi) = sup
s∈S

(max {W (s); 0})2
.

The index set S is defined as S = ∪tSt, the union runs over any possible integers
H0 ≤ t ≤ H with

St =
{

Ω
(∑K

k=1

(
γk +

∑H0

i=0 IR+(w0
ki

T
X + b0ki)(ζk

T
i X + αki)

+
∑H
i=t µkiφ(wki

TX + bki)
))

,

γ1, · · · , γK , α11, · · · , αKH0 ∈ R, µ1t, · · · , µKH ∈ R+; ζ11, · · · , ζKH0 ∈ Rd,
(w1t, b1t), · · · , (wKH , bKH) ∈ Θ\

{
(w0

11, b
0
11), · · · , (w0

KH0 , b0KH0)
}}

.

This theorem shows that the degree of overfitting is bounded in probability, but
depends on the size of the asymptotic set S. Intuitively the set S is the degree
of freedom of the estimated model when it is very near to the best function.
The set S depends on the difference of size between the model in use and the
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true one. Since the dimension of the true one is fixed, the overfitting depends
on the following hyperparameters of the estimated model: the number of hidden
neurons, and the size of the parameters. The bigger the hyperparameters, the
bigger the set S. Hence, to limit the size of S, we can reduce any of this
hyperparameter, but they have to be large enough so that the best function f0

belongs to the set of possible parameters. We will investigate the meaning of
this theorem on simulations in the next section.

4 An empirical investigation

In this section, we assess the effect of overparameterization on the training set
and the influence of the form of the best classification function on it. Since, in
practice, the data are often high dimensional, we chose to simulate inputs of size
200. Let us write 0R200 the null vector of R200 and IR200 the identity matrix of
R200 × R200. We trained fully connected feedforward networks with one hidden
layer and ReLU transfer functions on two sets of data:

1. For the first set, the input Xt is a Gaussian random vector of size 200, with
each component centered, normalized and independent from each other:
Xt ∼ N (0R200 , IR200). The output Yt is a Bernoulli variable: Yt ∼ b(0.5),
independent of Xt. We simulate a sample of independent vectors (Xt, Yt)
of length 100000: (Xt, Yt)1≤t≤100000. In this case, the best classification
function is f0(x) = (0, 0).

2. For the second set, we first create an MLP function M0 with two outputs,
200 as input size, one hidden layers of size 8 neurons and randomly cho-
sen weights between −0.5 and 0.5. The input Xt is a Gaussian random
vector of size 200, with each component centered, normalized and indepen-
dent from each other: Xt ∼ N (0R200 , IR200). The output of the network is
M0(x) =

(
M0

1 (x),M0
2 (x)

)
so the random variable Yt is a Bernoulli variable

with parameter
exp(M0

2 (Xt))

exp(M0
1 (Xt))+exp(M0

2 (Xt))
. We simulate a sample of indepen-

dent vectors (Xt, Yt) of length 100000: (Xt, Yt)1≤t≤100000. In this case, the
best classification function is the MLP function: f0(x) = M0(x).

Moreover, for each set of data, we simulate 100000 supplementary data for using
it to assess the models on a test set.

Training the models On both sets, we trained 8 architectures with one hidden
layer from 23 to 210 hidden units, each time increasing the number of hidden
units of each layer by factor 2. For the small architectures, 23 to 26 hidden
units, the amount of data is much greater than the number of parameters of
the MLP; it is the asymptotic framework where our results apply. For the great
architectures, 29 to 210 hidden units, the number of parameters of the MLP
is greater than the amount of data; it is the not-asymptotic framework, where
our results do not apply, but we did it for comparing with the experiments of
Neyshabur et al. [3]. Note that, since we generated the second data set with
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the best function f0 using the smallest architecture, all the MLP of the second
experiment can realize the best function.

For each experiment, we trained the network using Stochastic Gradient De-
scent (SGD) with mini-batch size 64, momentum 0.9 and fixed step size 0.01.
We did not use any technic of regularization. We stopped the training when
the number of epochs reached 1000. All the computations are done with Torch7
using a GPU.

Evaluations For the trained architectures we give the number of hidden units
of each hidden layer, the corresponding number of parameters, the mean LRTS
on the training data set and the mean LRTS on the test data set:

1

n

(
n∑
i=1

gθ̂(xi, yi)−
n∑
i=1

g0(xi, yi)

)
. (7)

Note that, since the amount of data is large (100000) the mean LRTS on the
test set will be very near to the expectation of the LRTS, which is called the
Kullback-Leibler divergence:

E
(
gθ̂(X,Y )− g0(X,Y )

)
:= K(g0, gθ̂). (8)

We summarize the results for the two data sets on table 1. As expected by our

Table 1: Comparison of overtraining in function of architectures and data sets

Nb of Nb of LRTS Data set f0(x) = 0 Data set f0(x) = M0(x)
hidden units parameters

23 1626 training 0.015146 0.008396
test 0.014629 0.020987

24 3250 training 0.029139 0.024180
test 0.033930 0.040766

25 6498 training 0.061729 0.054064
test 0.073892 0.090174

26 12994 training 0.126840 0.114709
test 0.186349 0.294475

27 25986 training 0.278007 0.244434
test 0.739622 1.682036

28 51970 training 0.688570 0.250662
test 7.874922 1.431996

29 103948 training 0.692167 0.250892
test 3.711566 0.993170

210 207874 training 0.692419 0.250924
test 2.704526 0.873004

results the training error depends not only of the architecture of the MLP but
also of the best function f0. Indeed, for all models, for the same number of
parameters and data, the training overfitting is smaller when the best function
is more complicated. However, we can see that the relationship between the
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test error and the training error also depends on this best function and even
if the learning overfitting is smaller for the second data set, the test error may
be more significant in this case. This fact, unexpected, remains to explain.
Finally, we can see that when the number of parameters becomes greater than the
amount of data, the test error seems to decrease when the amount of parameters
increases, as in Neyshabur et al. [3]. However, the test error of the biggest
model doesn’t reach the test error of the smallest and less overparameterized
model. Surprisingly, the behavior of the asymptotic case seems the inverse of
the behavior of the not-asymptotic case.

5 Conclusion

The asymptotic overfitting of MLP functions depends on the size of set S which
is a function of the difference between the complexity of the MLP function in
use and the complexity of the best classification function f0 (the number of
redundant hidden units). This fact explains the apparent contradiction noticed
by some authors (cf Zhang et al. [6]), where an MLP does not overfit too much
for a complex task but overfits a lot if you randomize the output data. Moreover,
in the experiments, we have seen that the relationship between the overtraining
on the learning set and the error on the test set is not obvious and seems also
depends on the best function f0. Finally, the behavior of the overfitting also
relies on the comparison of the amount of data and number of parameter of the
model and seems different in the asymptotic or not-asymptotic framework. It
will be interesting to understand these surprising facts which we leave for future
work.
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