
Memory Efficient Weightless Neural Network

using Bloom Filter

Leandro Santiago1, Leticia Verona1, Fabio Rangel1, Fabŕıcio Firmino1,
Daniel S. Menasche1, Wouter Caarls2, Mauricio Breternitz Jr3,
Sandip Kundu4, Priscila M.V. Lima1 and Felipe M. G. França1 ∗

1- Federal University of Rio de Janeiro (UFRJ), Brazil, 2- PUC Rio, RJ, Brazil,
3- University of Lisbon, Lisbon, Portugal, 4- UMass, Amherst, USA

Abstract. Weightless Neural Networks (WNNs) are a kind of Artifi-
cial Neural Networks based on RAM memory broadly explored as solution
for pattern recognition applications. Memory-oriented solutions for pat-
tern recognition are typically very simple, and can be easily implemented
in hardware and software. Nonetheless, the straightforward implementa-
tion of a WNN requires a large amount of memory resources making its
adoption impracticable on memory constrained systems. In this paper,
we propose a new model of WNN model which utilizes Bloom filters to
implement RAM nodes. Bloom filters reduce memory requirements, and
allow false positives when determining if a given pattern was already seen
in data. We experimentally found that for pattern recognition purposes
such false positives can build robustness into the system. The experimen-
tal results show that our model using Bloom filters achieves competitive
accuracy, training time and testing time, consuming up to 6 orders of mag-
nitude less memory resources in comparison with the standard Weightless
Neural Network model.

1 Introduction

Weightless Neural Networks (WNNs) [1] are neuron models based on Random
Access Memory (RAM) where each neuron is defined as RAM node. These mod-
els have been shown as attractive solutions to solve pattern recognition and ar-
tificial consciousness applications achieving competitive performance. WiSARD
(Wilkie, Stoneham and Aleksander’s Recognition Device) is the pioneering WNN
distributed commercially [2] which provides simple and efficient implementation
enabling to deploy learning capabilities into real-time and embedded systems.

The straightforward WiSARD implementation needs a considerable amount
of memory resources to obtain good learning features. To address this prob-
lem, we propose a new WiSARD model that replaces RAM nodes with Bloom
filters. Bloom filters [3, 4] are probabilistic data structures which represent a
set as small bit array allowing the occurrences of false positives, that is, an
element can be considered a member of set even it is not. Although false posi-
tives detract certain applications, we experimentally discovered that for pattern
recognition purposes they can build robustness into the system (as dropout does
to deep neural networks) – Bloom WiSARD presents similar accuracy when con-
trasted against WiSARD, but uses significantly less resources and, in this sense,

∗The authors thank CAPES, CNPq and FAPERJ for the financial support for this work.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

307

Table 1: Comparison of classifiers: simpler models such as Bloom WiSARD typ-
ically favor generalization. WiSARD and Dict WiSARD are logically equivalent
whereas Bloom WiSARD has more degrees of freedom.

Space per
discriminator

Use of hashes for Accuracy

WiSARD N2M bits no hashes reference
Dict
WiSARD

significantly less
than WiSARD
(worst case equal)

exact set
membership (with
collision checking)

equal to WiSARD
(given mapping from
input to RAM)

Bloom
WiSARD

typically similar to
Dict WiSARD
(tunable by design)

approximate set
membership (no
collision checking)

potentially greater
than WiSARD
(hashes are tunable)

is more robust. Our experiments analyze accuracy, training time, testing time
and memory consumption of our model compared against standard WiSARD
and WiSARD implemented with hash tables (see Table 1).

2 Background: WiSARD and Bloom filters

WiSARD (Wilkie, Stoneham and Aleksander’s Recognition Device) is a multi-
discriminator WNN model proposed in the early 80’s [2] that recognizes patterns
from binary data. Each class is represented by a discriminator which contains a
set of RAMs. A binary input with N ×M bits is split into N tuples of M bits.
Each tuple n, n = 1, . . . , N , is a memory address to an entry of the n-th RAM.
Each RAM contains 2M locations.

A pseudo-random mapping is a deterministic function that maps each binary
input matrix to a set of N tuples of M bits each. The function is typically a
pseudo-random shuffling of the binary input matrix, hence the name pseudo-
random mapping. Each discriminator may be associated to a different pseudo-
random mapping, that must remain the same across training and classification
phases.

At the training phase, initially all RAMs have their locations set to zero (0).
Each training sample is treated by the corresponding discriminator which sets
to one (1) all accessed RAM positions. At the classification phase, the input is
sent to all discriminators generating responses per discriminators by summing
all accessed RAM values. The discriminator with the highest response is chosen
as representative class of the input.

Bloom filters [3] are space-efficient data structures for Approximate Mem-
bership Query (AMQ) which test whether an element belongs to a given set
or not with a certain false positive probability. In other words, sometimes the
membership query will respond that an element was stored while actually it was
not inserted. A Bloom filter is composed of an m-bit array and k independent
hash functions that map an element into k bit array positions.

The standard Bloom filter supports insertion and query operations. Initially,
all bit array positions are zeroed. In the insertion operation, an element is

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

308

Fig. 1: Bloom WiSARD classifier: 16-bit input, 8-bit tuples and 2 Bloom filters.

mapped into k positions of the bit array using the k hash functions and the
corresponding k bits are set to 1. The query operation looks up the k positions
mapped from the input element, indicating it as either a member of the set,
considering a false positive rate if all values are 1′s, or a non-member when any
value is 0. Note that a Bloom filter always reports a true negative whenever an
element is not a member.

The probability of false positive p is affected by the parameters m, n and
k, corresponding to bit array size, number of elements to store and number
of hash functions, respectively [5]. Given the probability p and capacity n,
the ideal parameters m and k are calculated through the following formulas:
m = −n ln(p)/ ln(2)2 [6] and k = m ln(2)/n [5].

3 WiSARD based on Bloom Filters

The memory structures subsumed by a WiSARD WNN are typically sparse. We
extend WiSARD by replacing RAMs with Bloom filters to reduce its memory
resources by avoiding storage of irrelevant zero positions. The new model is
termed Bloom WiSARD. The key idea is to store a set of tuples mapped to each
Bloom filter and test if a given tuple belongs to its corresponding set.

Figure 1 presents the Bloom WiSARD design. On the training phase, the
tuples are inserted into Bloom filters by updating the k bit array positions. On
the classification phase, the tuples are queried into their associated Bloom filters
returning whether each tuple is a member or not by ANDing all k bit values.
Similar to WiSARD, the discriminator responses are calculated by summing
the N Bloom filter membership results so that the highest response selects the
appropriate discriminator to represent the input.

Our Bloom WiSARD implementation utilizes a double hashing technique [7]
to generate k hash functions in the form: h(i, k) = (h1(k) + i× h2(k)) (mod n),
where h1 and h2 are universal hash functions. We adopt MurmurHash as seed
for h1 and h2 [8].

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

309

Table 2: Performance of classifiers in binary classification problems.
Dataset WNN Acc Training

(s)
Testing

(s)
Memory
(KB)

Adult
WiSARD 0.722 4.414 1.05 8978432
Dict WiSARD 0.721 1.947 1.188 383.535
Bloom WiSARD 0.718 1.932 1.166 80.173

Australian
WiSARD 0.843 0.002 0.001 4096
Dict WiSARD 0.841 0.002 0.001 11.299
Bloom WiSARD 0.834 0.002 0.001 8.613

Banana
WiSARD 0.87 0.052 0.028 13312
Dict WiSARD 0.871 0.054 0.033 23.428
Bloom WiSARD 0.864 0.058 0.036 3.047

Diabetes
WiSARD 0.698 0.001 0.0007 2048
Dict WiSARD 0.689 0.001 0.0008 6.553
Bloom WiSARD 0.69 0.001 0.0008 4.793

Liver
WiSARD 0.593 0.001 0.0007 5120
Dict WiSARD 0.587 0.001 0.0008 6.387
Bloom WiSARD 0.591 0.001 0.0009 2.344

4 Experiments and Results

Dataset and experimental setup To evaluate our proposed model, we compare
Bloom WiSARD to two different WiSARD versions: standard WiSARD and
dictionary WiSARD (see Table 1). The latter version is implemented with Hash
Tables instead of RAMs to store the tuples values as key-value pair at each
position, with the key representing the memory address and, the value, the tuple
[9]. We select the MNIST database [10] and a subset of binary classification and
multiclass classification datasets used in [11]. Most of the problems were taken
from UCI public repository [12] and they have different characteristics in terms
of number of samples, number of classes and number of features. Some datasets
do not provide the training set and testing set in separated files. For these
datasets, we adopt the same methodology applied in [11]: we randomly shuffle
the data and partition it in 3 parts, such that 2/3 and 1/3 are used for training
and testing sets, respectively.

The experiments were performed on an Intel Core i7-6700(3.40GHz) proces-
sor with 32GB of RAM running Ubuntu Linux 16.04. The core of all WiS-
ARD experiments was implemented in a single-thread C++11 library accessed
through a Python interface. To convert the input attributes to binary format,
we concatenate all binary attributes using thermometer (resp., hot encoding) to
transform the continuous (resp., categorical) attributes. The input size, number
of RAMs and tuple size varied according to the dataset, but were kept across
all considered WiSARD architectures. Bloom filters are setup with 10% of false
positive probability. The capacities were empirically selected from each dataset
and m and k were obtained through the formulas presented in Section 2.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

310

Table 3: Performance of classifiers in multiclass classification problems.
Dataset WNN Acc Training

(s)
Testing

(s)
Memory
(KB)

Ecoli
WiSARD 0.793 0.0005 0.0005 7168
Dict WiSARD 0.799 0.0005 0.0005 5.664
Bloom WiSARD 0.799 0.0005 0.0007 3.281

Iris
WiSARD 0.985 0.0001 0.000009 1536
Dict WiSARD 0.977 0.0001 0.000008 0.747
Bloom WiSARD 0.976 0.0001 0.0001 0.703

Letter
WiSARD 0.845 1.483 0.16 10223616
Dict WiSARD 0.846 0.0717 0.22 121.748
Bloom WiSARD 0.848 0.07 0.208 91.292

MNIST
WiSARD 0.917 4.317 0.33 9175040
Dict WiSARD 0.916 0.811 0.475 1368.457
Bloom WiSARD 0.915 0.77 0.369 819.049

Satimage
WiSARD 0.851 0.048 0.034 27648
Dict WiSARD 0.853 0.05 0.049 69.141
Bloom WiSARD 0.851 0.053 0.05 12.656

Shuttle
WiSARD 0.87 0.119 0.064 8064
Dict WiSARD 0.869 0.12 0.078 4.956
Bloom WiSARD 0.868 0.132 0.103 3.691

Vehicle
WiSARD 0.67 0.003 0.0021 9216
Dict WiSARD 0.672 0.003 0.0026 17.617
Bloom WiSARD 0.662 0.003 0.0028 4.219

Vowel
WiSARD 0.876 0.0023 0.0025 14080
Dict WiSARD 0.876 0.0023 0.0032 16.221
Bloom WiSARD 0.876 0.0022 0.0036 6.445

Wine
WiSARD 0.932 0.0006 0.0003 4992
Dict WiSARD 0.924 0.0005 0.0003 4.248
Bloom WiSARD 0.926 0.0005 0.0004 2.285

Results and discussion All results are obtained through the mean of 20 runs
with negligible standard deviation. Tables 2 and 3 show the results for bi-
nary classification and multiclass classification datasets, respectively. Note that
the accuracy of Dict WiSARD and WiSARD slightly differ as we used differ-
ent pseudo-random mappings at each training epoch (see Table 1). Overall,
Bloom WiSARD achieved comparable accuracy, training time and testing time
when compared against WiSARD and Dict WiSARD, while consuming a smaller
amount of memory. Bloom WiSARD’s memory consumption is reduced up to 6
order of magnitude (Adult and Letter) compared against standard WiSARD and
approximatelly 7.7 times (Banana) when compared against dictionary WiSARD.
The memory resources can be further reduced by increasing the false positive
rate and the accuracy can be increased by tuning the hash functions to capture
essential aspects of the data, which we leave as subject for future work.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

311

5 Conclusion

In this work we propose the Bloom WiSARD model which extends WiSARD
by implementing RAM nodes as Bloom filters. By using Bloom filters, mem-
ory resources are significantly reduced and for pattern recognition purposes we
experimentally found that Bloom filters can build robustness into the system.
Our experiments show that the model provides good accuracy and requires low
training and testing times. In addition, it consumes up to 6 orders of magnitude
less resources than standard WiSARD and about 7.7 times less resources than
WiSARD implemented with dictionaries. Future work will focus on extending
Bloom filter operations such as frequency counts of elements stored, in order to
enable Bloom WiSARD to use improved techniques such as DRASiW [13] or the
Bloom filter false free zone [14]. More broadly, we envision that this work is one
step further towards the use of Bloom filters for machine learning [4, 15].

References

[1] I. Aleksander, M. De Gregorio, F. Maia Galvão França, P. Machado Vieira Lima, and
H. Morton. A brief introduction to weightless neural systems. In ESANN 2009, 17th
European Symposium on Artificial Neural Networks, 2009.

[2] I. Aleksander, W.V. Thomas, and P.A. Bowden. Wisard·a radical step forward in image
recognition. Sensor Review, 4(3):120–124, 1984.

[3] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun.
ACM, 13(7):422–426, July 1970.

[4] Lailong Luo, Deke Guo, Richard T. B. Ma, Ori Rottenstreich, and Xueshan Luo. Op-
timizing Bloom filter: Challenges, solutions, and comparisons. IEEE Communications
Surveys and Tutorials, 2019.

[5] Peter C. Dillinger and Panagiotis Manolios. Bloom filters in probabilistic verification. In
Alan J. Hu and Andrew K. Martin, editors, Formal Methods in Computer-Aided Design,
pages 367–381, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[6] P. Sterne. Efficient and robust associative memory from a generalized bloom filter. Bio-
logical Cybernetics, 106(4):271–281, Jul 2012.

[7] A. Kirsch and M. Mitzenmacher. Less hashing, same performance: Building a better
Bloom filter. In Yossi Azar and Thomas Erlebach, editors, Algorithms – ESA 2006, 2006.

[8] Wikipedia. Murmurhash fuction, 2019. https://en.wikipedia.org/wiki/MurmurHash.

[9] R.J. Mitchell, J.M. Bishop, and P.R. Minchinton. Optimising memory usage in n-tuple
neural networks. Mathematics and Computers in Simulation, 40(5):549 – 563, 1996.

[10] Yann LeCun. The mnist database of handwritten digits, 1998. http://yann.lecun.com/
exdb/mnist/.

[11] G. Huang, H. Zhou, X. Ding, and R. Zhang. Extreme learning machine for regression and
multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 42(2):513–529, April 2012.

[12] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[13] Massimo De Gregorio and Maurizio Giordano. Cloning DRASiW systems via memory
transfer. Neurocomputing, 192:115–127, 2016.

[14] Sándor Z. Kiss, Éva Hosszu, János Tapolcai, Lajos Rónyai, and Ori Rottenstreich. Bloom
filter with a false positive free zone. In IEEE INFOCOM, 2018.

[15] Moustapha M Cisse, Nicolas Usunier, Thierry Artieres, and Patrick Gallinari. Robust
Bloom filters for large multilabel classification tasks. In Advances in Neural Information
Processing Systems, pages 1851–1859, 2013.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

312

