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5 Conclusion

In this work we propose the Bloom WiSARD model which extends WiSARD
by implementing RAM nodes as Bloom filters. By using Bloom filters, mem-
ory resources are significantly reduced and for pattern recognition purposes we
experimentally found that Bloom filters can build robustness into the system.
Our experiments show that the model provides good accuracy and requires low
training and testing times. In addition, it consumes up to 6 orders of magnitude
less resources than standard WiSARD and about 7.7 times less resources than
WiSARD implemented with dictionaries. Future work will focus on extending
Bloom filter operations such as frequency counts of elements stored, in order to
enable Bloom WiSARD to use improved techniques such as DRASIW [13] or the
Bloom filter false free zone [14]. More broadly, we envision that this work is one
step further towards the use of Bloom filters for machine learning [4, 15].
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