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Abstract. We address the problem of extracting common information
from multiple datasets. More specifically, we look for a common subspace
minimizing the maximal dissimilarity with all datasets and we propose an
algorithm derived from the first order necessary conditions of optimality.
On synthetic datasets the proposed method gives as good results as a
Riemannian based approach, but also provides an evaluation on how far
the iterate is from a critical point.

1 Introduction

Extracting a subset of components common to multiple datasets is a common
problem, appearing in bioinformatics [1, 2], signal processing [3], ecological data
analysis [4] or strategic management [5]. A typical example can be found in
bioinformatics, where there often exist multiple studies measuring the treatment
and progress of the same disease. Each corresponding dataset was measured on
its own set of patients and with its own experimental conditions, that should
be taken into account in any analysis. It is crucial to extract the information of
interest common to all datasets (for example, linked to a disease) while bypassing
possible stronger effects specific to each dataset.

Let {X1, . . . Xm} be a collection of m datasets where Xi ∈ Rp×ni represents a
dataset of p features and ni samples. For example, dealing with gene expressions,
each Xi(r, s) can represent the expression level of gene r for patient s in dataset
i. The simplest method to extract a common component is to concatenate all the
datasets X1,...,Xm into a larger dataset X = [X1 . . . Xm] ∈ Rp×(n1+...+nm) and
apply standard methods such as principal components analysis on X. However,
this approach does not use the dataset membership information, which can help
improve the extraction of components common to all the datasets. When dealing
with only two datasets, the best known method is canonical correlation analysis
(CCA) [6]. CCA looks for two linear combinations of each dataset features, such
that the correlation between both linear combinations is maximized. Deflation
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is then used to compute the next best linear combinations. Another well-known
method, partial least square regression [7], maximizes covariance. Extensions
of such methods to more than two datasets usually try to maximize the sum
of correlations (or covariances) between all pairs of datasets, with orthogonality
constraints on the new features or on the linear combination coefficients [2, 8,
9].

If the stronger variations present in the Xi’s correspond to the common
components, then any CCA-like method should work. However the common
components may be hidden by other variations in the datasets, stronger but not
present in all the Xi’s. For instance, if we are dealing with a set of datasets all
of which are similar except one that was measured using a different technology
then maximizing the covariance can lead to components representing very well
technical features strongly present in all the similar datasets but absent from
the last one. Considering the column space Xi = {Xiα : α ∈ Rni} instead of
the matrix Xi, for i = 1, . . . ,m, facilitates giving all of the variations the same
importance.

A second difficulty may arise if the common component in the Xi’s is present
in a noisy version. We should be careful to not recover another signal which is
less noisy, but not present in all Xi’s. To avoid this, we propose to compute an
approximate common subspace, represented by U ∈ Rp×K , by minimizing the
maximal dissimilarity d between U and all datasets Xi ∈ Rp×ni :

U∗ = argmin
U

max
i

d(U,Xi). (1)

This approach is similar to the minimum enclosing ball problem, that finds
the center of the smallest-radius sphere enclosing all Xi (also called 1-center
problem or minimax optimization problem). This kind of optimization problem
is well-studied, especially in Euclidean space [10, 11, 12]. However, here each Xi

represents a subspace and not a point in Rp, which requires the use of an adapted
dissimilarity. We want d(U,Xi) = d(U ,Xi) with U and Xi denoting the subspaces
generated by the columns of U and Xi. An algorithm to solve the minimum
enclosing ball problem when all points belong to the same Riemannian manifold
was proposed in [13]. This method could be used when the column space of each
Xi has the same dimensionK, because in this case them subspaces belong to the
same Grassmann manifold G(p,K), i.e., the set of all K-dimensional subspaces
in Rp. Here, however, the points Xi may have different dimensions, and the
desired center of the ball, U , is of lower dimension than the Xi’s. An adaptation
of [13] to the case with various dimensions was proposed in [14]. We propose
here another approach that has the advantage of also giving an estimate of how
far the iterate is from a critical point.

In this paper, we first propose a formulation of the problem and derive the
associated first order necessary conditions of optimality in Section 2. Based on
those conditions, we propose an algorithm in Section 3, and show in Section 4
that our approach gives results as good as those in [14] on synthetic datasets.
Conclusion are presented in Section 5.
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2 Formulation

Let {X1, . . . Xm} be a collection of m datasets where Xi ∈ Rp×ni represents a
dataset of p features and ni samples. We want to solve problem (1), i.e., to find

a subspace U of given dimension K (via a representative U ∈ Rp×K
∗ ) minimizing

the maximal dissimilarity to all the subspaces Xi associated with the Xi’s. To
evaluate the dissimilarity between two subspaces X and U , we use

d(U ,X ) = d(U,X) =
√
K − Tr

(
ǓT X̌X̌T Ǔ

)
=

√∑
l

sin2 ϕl(U,X)

with ϕl(U,X) the principal angles between U and X . So the cosϕl(U,X) are
the singular values of ǓT X̌, with Y̌ denoting a matrix with columns that are
an orthonormal basis of Y. For K = 1, ϕ1(U,X) is the angle between U and
its orthogonal projection onto X . Since minU maxi d(U,Xi) is equivalent to
minU,τ τ subject to τ ≥ d2(U,Xi) for all i, the problem is equivalent to:

max
U,τ

τ s.t. τ −
K∑
l=1

uT
l X̌iX̌

T
i ul ≤ 0 ∀i (2a)

UTU = 0. (2b)

Associating Lagrange multipliers γi’s with constraints (2a), and M with con-
straint (2b), the KKT conditions can be written as:∑

i

γi = 1 (3a)(∑
i

γiX̌iX̌
T
i

)
U = UM (3b)

UTU = I (3c)

τ − Tr
(
UT X̌iX̌

T
i U
)
≤ 0 ∀i = 1, ...,m (3d)

γi ≥ 0 ∀i = 1, ...,m (3e)

γi
(
τ − Tr

(
UT X̌iX̌

T
i U
))

= 0 ∀i = 1, ...,m. (3f)

Due to the symmetry in the constraint (2b), M is symmetric. So M = QDQT

with D a diagonal matrix and Q an orthogonal matrix, and
(∑

i γiX̌iX̌
T
i

)
UQ =

UQD which means that UQ is a matrix of eigenvectors of
∑

i γiX̌iX̌
T
i .

Conditions (3b) and (3c) are equivalent to finding eigenvectors of the ma-
trix

∑
i γiX̌iX̌

T
i . Condition (3a) combined with (3b) and (3e) can be inter-

preted as finding optimal weights γi’s for the different subspaces. The optimal
U is then given by eigenvectors of

∑
i γiX̌iX̌

T
i , a convex combination of the

X̌iX̌
T
i ’s. Condition (3f) implies that for each X̌i, either γi = 0 which means

that the corresponding dataset is not used, or τ = K − TrUT X̌iX̌
T
i U which

tightens the corresponding constraint (3d). Assume that we have γi’s satisfy-
ing condition (3f), and let UY DY V

T
Y be the singular value decomposition of

Y = [
√
γ1X̌1,

√
γ2X̌2, ...,

√
γmX̌m] ∈ Rp×N . A candidate solution of problem (2)
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would then be U∗ = UY . The difficulty is then to find γi such that condition
(3f) holds.

3 Algorithm

Based on the interpretation of KKT conditions, we can build an algorithm
to compute a candidate U∗. The main difficulty is to find good γi’s. Since∑

i γi = 1, we have that∑
i

γid
2(U,Xi) ≤

∑
i

γi max
j

d2(U,Xj) = max
j

d2(U,Xj) (4)

with equality at optimality since condition (3f) must hold. If we stop when
δf = maxi d(U,Xi)−

√∑
i γid

2(U,Xi) ≤ ϵ with ϵ small and positive, condition
(3f) should nearly hold.

Ideally we want both to increase
∑

i γid
2(U,Xi) and decrease maxi d

2(U,Xi)
at each iteration t. With U (t) = U(γ(t)) fixed for iteration t, maximizing the first
term is setting to 0 all γi’s except for those associated with the Xi’s at maximal

dissimilarity to U . However, taking directly γ
(t+1)
i = α if maxj d(U

(t), Xj) −
d(U (t), Xi) ≤ ϵ, and 0 otherwise, would eventually ignore the other Xi’s and
probably not decrease maxi d

2(U(γ(t+1)), Xi). To smooth the γi’s evolution, we
propose to take:

γ
(t+1)
i =

(
γ
(t)
i +

1

t+ 1
r
(t)
i

)
β (5)

with r
(t)
i = 1 if maxj d(U

(t), Xj) − d(U (t), Xi) ≤ ϵ, r
(t)
i = 0 otherwise, and β a

normalizing constant ensuring that
∑

i γi = 1.
The proposed algorithm (Algorithm 1) enforces conditions (3a) to (3e) at

each iteration and tries to achieve (3f) in the limit. The approach is reminiscent
of the one proposed in [11] for the minimax problem in Rn.

Algorithm 1 KKT approach for minimax problem (2).

1: t← 1
2: γ

(t)
i = 1

m for all i
3: while Stopping criterion not met do
4: Y = [

√
γ1X̌1,

√
γ2X̌2, ...,

√
γmX̌m]

5: U (t) ← singular vectors for the K largest singular values of Y

6: r
(t)
i = 1 if maxj d(U

(t), Xj)− d(U (t), Xi) ≤ ϵ, r
(t)
i = 0 otherwise,

7: γ
(t+1)
i ←

(
γ
(t)
i + 1

t+1r
(t)
i

)/∑
j

(
γ
(t)
j + 1

t+1r
(t)
j

)
8: t← t+ 1
9: end while

4 Results

To study the behavior of the algorithm, we generated datasets in the following
way. We first generated three orthonormal matrices U1, U2, U3 of dimension
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p×K with orthogonal column spaces. Data matrices Xi ∈ Rp×ni were generated
by combining information from the matrices U1, U2, and U3 and adding noise
and additional directions. Each of the K generating vectors of U1 is present in
each Xi with moderate noise, each of the K generating vectors of U2 is present
in 80% of the Xi’s with small noise, and each of the K generating vectors of U3

is present in 50% of the Xi’s with small noise. We also added si orthonormal
vectors to each Xi, with si ∼ U[5 11] uniformly distributed between 5 and 11.
The noise is represented as the angle ϕijl between the component l of Uj and Xi.
We took ϕijl ∼ Uπ

2 [0.25 0.45] for j = 1 and ϕijl ∼ Uπ
2 [0 0.1] for j = 2, 3. Finally,

we multiplied by 2 the U3 related vectors to give them more weight.
An example of the evolution of the objective function (2) for the Grassman-

nian approach [14] and the proposed KKT approach is shown on Figure 1, with
the lower bound (4) associated with the KKT approach. Evolution of the maxi-
mal dissimilarity is smoother for the Grassmannian approach, however the KKT
approach gives us a clear indication on the proximity to a critical point. In
Figure 2 we compare the results obtained for 50 randomly generated datasets
when applying the SVD on the Xi’s (SVD) or on the X̌i’s (SVDo) concatenated,
and the minimax KKT or Grassmaniann approaches. We stopped the minimax
algorithms after ten seconds, then took the best result in the 100 last iterations.
As expected, SVD recovers U3, the subspace with high weight and SVDo tends to
recover U2, present in many Xi’s with small noise. The minimax approaches give
the best results in terms of objective function values, with similar performance
for both algorithms. They tend to recover U1, which by construction is close to
the center U∗. The mean and standard deviation of the corresponding δf are
0.0027 ± 0.0044 for a mean objective function value of 0.7076.
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Fig. 1: Example of the evolution of
the objective function for the Grass-
mannian and the KKT minimax ap-
proaches.
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Fig. 2: Comparisons of the four meth-
ods for m = 10, K = 2, p = 1000
(the maximal possible dissimilarity of
a subspace of dimension K is

√
K).
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5 Conclusion

We proposed a formulation to compute a subspace that minimizes the maximal
dissimilarity to each subspace in a set, and a simple algorithm based on the asso-
ciated KKT conditions to solve it. Compared to simpler SVD-based approaches,
we showed that this formulation better recovers such a central subspace in the
presence of components with less noise, in most but not all subspaces. Com-
pared to the Grassmannian approach, our KKT-based method gives similar per-
formances but has the advantage of providing an estimate of how far the current
iterate is from a critical point, which can be used as a stopping criterion. An
important next step would be to improve the proposed γi’s update in order to
ensure convergence.
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