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Abstract. Synaptic connectivity in the brain is thought to encode the
long-term memory of an organism. But experimental data point to sur-
prising ongoing fluctuations in synaptic activity. Assuming that the brain
computation and plasticity can be understood as probabilistic inference,
one of the essential roles of noise is to efficiently improve the performance
of optimization in the form of stochastic gradient descent. The strict sad-
dle condition for synaptic plasticity is deduced and under such condition
noise can help escape from saddle points on high dimensional domains.
The theoretical result explains the stochasticity of synapses and guides us
how to make use of noise. Our simulation results manifest that in the
learning and test phase, the accuracy of synaptic sampling is almost 20%
higher than that without noise.

1 Introduction

Quite a number of experiments show that noise plays diverse roles in neu-
ral system [1]. For example, noise can improve the quality of measurements
(signal-to-noise ratio, mutual information, coherence, etc.), such as the form of
’stochastic facilitation’ [2]. However, some observations haven’t been explained,
for example, intrinsic noise can switch a neuron from one stable pattern to an-
other [3]. The puzzling results show that the benefits of noise still need a careful
investigation.

General results from statistical learning theory suggest that both brain com-
putations and brain plasticity should be understood as probabilistic inference
[4, 5]. These results have provided insight into how noise plays an essential role
in the networks of spiking neurons. Maass et al. [6] proposed that knowledge can
be stored in probabilistic distributions of network states and noise enable net-
works of spiking neurons to carry out probabilistic inference through sampling.
Based on Boltzmann machines, they modified neurons to generate a spike with
probability. This stochasticity is linked to the sampling method. Moreover, it
helps network perform probabilistic inference. Kappel et al. [7] presents a new
theoretical framework for analyzing and understanding local plasticity mecha-
nisms in the brain as stochastic processes. Instead of stochastically spiking of
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neurons [6], the noise results from the fluctuation of synapses, which endows
networks to automatically compensate for internal and external changes.

But in theoretical neuroscience research, the computational benefits of noise
to networks of spiking neurons has rarely been addressed, the reason why our
brain benefits from noise has not been verified and the method of making full
use of noise has also not been proposed.

In this paper, we attempt to answer the above three problems. First, we pro-
pose that one of the essential roles of noise in the brain computations and brain
plasticity is to efficiently improve the performance of optimization. Noise helps
optimization escape from bad stable points. Second, we theoretically prove why
noise benefits optimization in the brain. The main bottleneck in optimization is
that gradient updates are trapped in exponentially many saddle points instead
of local minima [8, 9]. Under the so-called strict saddle property, gradient decent
with noise will escape from the bottleneck and leads to the efficient optimization
[10]. We prove that strict saddle condition is satisfied for synaptic plasticity.
Third, we show that noisy networks for which the synaptic weights affect the
noise variance have better learning performances.

2 Synaptic sampling model and Saddle point problem

Network plasticity by maximum the likelihood has been studied in many ways.
It adjusts synaptic parameters θ to maximize the fit of the network to inputs x.
However, the model tends to produce overfitting, thereby reducing generalization
capabilities. Furthermore, without any prior distribution, it respond slowly to
perturbations. The solution to such challenge is how posterior distribution of
weights can be represented and learned in neural dynamics. Based on stochastic
differential equation, Maass et al. [7] solve this challenge by sampling from
posterior distribution pN (θ|x). This model defined by Eq.(1) is referred to as
synaptic sampling.

dθki = b

(
∂ log pS(θ)

∂θki
+

∂ log pN (x|θ)
∂θki

)
dt+

√
2bdWki (1)

However, when this model is used for classification with a standard Gaussian
noise, it is difficult to find a reasonable minimum. Because there are many
saddle points on the high error plateaus [8]. Gradient based algorithms are
particularly sensitive to saddle point problems as they only depend on gradient
information. Furthermore, they only understand noise as a functional aspect for
learning because it helps the network sample from posterior distributions. We
argue that noise plays a more important role in the optimization process. We
propose a sufficient condition that noise should satisfy in order to improve the
optimization process.
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Table 1: Definitions of the main mathematical symbols used in this paper
xn vector of the nth input variables {xn

1 , ..., x
n
I }

zn vector of the nth output variables {zn1 , ..., znK}
hn vector of the label {hn

1 , ..., h
n
K}

w vector of all synaptic weights wki = exp(θki − θ0)
θ vector of all synaptic parameters {θki, k ≤ K, i ≤ I}
pS (θ) structural constraints following N (μ, σ2)
pN (Jmax|θ) likelihood function with the form of cross entropy

log pN (Jmax|θ) =
∑N

n=1

∑K
k=1 Θ{znk } log p (znk |xn, θ)

pN (xn|θ) Poissonian distributions of spikes parameterized by αewki

dWki stochastic time course of the parameter θki
Θ(znk ) Heaviside step function
Sk (t) the spike train of the neuron zk

3 ’Strict saddle’ condition for synaptic sampling

Recently, Rong Ge et al.[10] identify a ’strict saddle’ condition, which guar-
antees stochastic gradient decent can escape from the saddle points quickly (see
[10] Theorem 6). Note that a twice differentiable function f(w) is strict saddle,
if all its local maxima have ∇2f(w) < 0 and all its other stationary points satisfy
λmax(∇2f(w)) > 0.

We study the effect of noise on the synaptic sampling defined in Eq.(1) for
classification. As Fig.1 shows, input neurons tune nth stimulus to 200-ms long
spiking activities xn according to tuning curves. Synaptic sampling is then
applied to KxI synapses. In the Winner-Take-All(WTA) circuit , the output
is a 200-ms spiking pattern zn and the neuron which spikes most indicates the
possible label. The learning goal in Eq.(1) becomes the posterior distribution
p∗(θ|Jmax)defined by pS(θ) ∗ pN (Jmax|θ). pN (Jmax|θ) measures the degree of
network fitting to the classification. The detailed definition is shown in Table 1.
The synaptic sampling rule Eq.(1) yields for this model.
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Fig. 1: Architecture of the networks whose dynamics are modeled by Eq.(2)
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dθki = b
(

1
σ2 (μ− θki) +

∑N
n=1 wki (x

n
i − αewki) (Θ {hn

k} − Sk (t))
)
dt

+bdWki (2)

where the component (xn
i − αewki) (Θ {hn

k} − Sk (t)) of likelihood differential
term is a simplified version of STDP (spike-timing dependent plasticity).

We show that when the noise takes a certain form, synaptic sampling net-
work for classification satisfies ’Strict saddle’ condition and leads to efficient
optimization. Note that if the noise is just standard normal distribution which
is a popular choice for stochastic differential equation, the network will not sat-
isfy such property.

Theorem 1 (sufficient condition) Given random samples X such that out-
put Y = E(g(X)) ∈ R

K is spike trains for classification in the synaptic sampling
network, there is a loss function f (w)= E(φ(w,X))w ∈RKxI such that every lo-
cal minimum corresponds to valid output Y. Further, if the noise satisfies Eq.(3),
function f is strict saddle.

dWi= N (0, Nαewki)dt (3)

Proof sketch of Theorem In order to prove theorem, we need to prove
λmax(∇2f(w)) > 0. We prove a sufficient condition, i.e.

∑
λ
(∇2f (w)

)
> 0.

According to the equation about trace of matrix M: tr(M) =
∑

λ, we get ,

∑
λ
(∇2f (w)

)
=

∑
k

∑
i

∇2f(θki) = −KI

σ2
+
∑
k

∑
i

1

σ2
(θki − μ)

+
∑
n

∑
k

∑
i

w2
ki{αewki(Sk(t))− 1{hn = k}} (4)

It is obvious that
∑

λ
(∇2f (w)

)
consists of three terms: A = −KI

σ2 , B =∑
k

∑
i

1
σ2 (θki − μ), C =

∑
n

∑
k

∑
i w

2
ki{αewki(Sk(t)) − 1{hn = k}}. We need

to prove
∑

λ
(∇2f (w)

)
= A+B +C > 0. The proof is divided into three steps.

Note that the first sentence of each step below is the conclusion we want to
prove.

1) B � C. Only when the noise dWi= N (0, Nαewki)dt, we can derive that
B + (xn

i − αewki)C is a variant of the gradient. According to the zero
gradient and STDP learning rule, B

C ≈ 0, thereby B can be ignored.

2) C is positive. C ≈ N(
∑

i w
2
kixi −

∑
i w

2
label,ixi) which represents the

approximate potential difference of actual and expected neurons. When
the network is trapped in saddle points, the neuron which releases spikes
is not the expected. Thus, potential of the actual neuron is higher than
the expected.

3) A+B +C > 0. A is negative constant. When N is greater than a certain
value, C is large enough so that A+B +C > 0 and strict saddle property
will be satisfied.
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The theorem are therefore proved. That is to say, we apply Theorem 1
to make the synaptic sampling network satisfy strict saddle condition and by
Theorem 6 in [10] we know that noise will help escape from saddle points.

4 Network Simulations

In the simulations, we use a cluster of points in 3D space to represent one
sensory experience for visualization. We present 43200 samples to the network
during 2.4 hours to deal with 10-categories classification. Through the tun-
ing curves of 1000 input neurons, 200ms spike patterns were communicated to
synaptic sampling network for each sample. According to Eq.(2) and spike-
based update scheme, the sensory experiences were presented sequentially and
all synapses were updated sequentially. The final predicted label is the neuron
which fires most between the 10 output neurons. We repeat the simulation 10
runs and the accuracy is average over 10 runs. The results are shown in Fig.2. In
the learning process, responses were unspecific to different inputs initially and at
1700 s responses had become obvious preferences for different inputs. Synaptic
sampling without noise can not learn this task accurately. In the learning and
test phase, the accuracy of synaptic sampling is almost 20% higher than that
without noise.

b) c)

initial t=1700sa)

time[s]/100
100 200 200 400 100 200 200 400

time[s]/100

ne
ur
on
s

5

10

ne
ur
on
s

5

10

Synaptic	sampling	without	noise
Synaptic	sampling	with	noise

Synaptic	sampling	without	noise
Synaptic	sampling	with	noise

A
cc
ur
ac
y

0.2

0.7

1.1

Tr
ai
ni
ng
	Accura

cy

0.35

0.6

0.85

Interation	[200ms]21 43 Training Test
x	104

Fig. 2: a) The development of readout spikes in the course of learning. b) Learn-
ing curves of synaptic sampling with/without noise. c) Accuracy comparison in
the learning and testing phase.
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5 Conclusion

In this paper, we propose that the essential role of noise in the brain computa-
tions and brain plasticity is to efficiently improve the performance of optimiza-
tion. First, based on the synaptic sampling, on the one hand, we can formalize
the noise in the network theoretically by the stochastic term dWi; on the other
hand, the brain computations and brain plasticity with noise is separately con-
verted to the Bayesian inference and differentiation of the likelihood. Next,
through the use of sufficient condition, the evaluation of maximum eigenvalue is
skillfully converted to the trace of Hessian matrix. Then, by inducing the strict
saddle property, we prove that the plasticity networks with noise in Eq.(3) sat-
isfy such property so that noise will help escape from exponentially many saddle
points. We propose a sufficient condition for improving optimization through
noise: as long as the noise meets a certain criterion, synaptic sampling network
satisfies ’Strict saddle’ condition and the optimization will be more efficient. In
our further work, the form of noise will be explained from the perspective of
on-line learning. On-line learning is to use one sample to estimate the expected
gradient. It is a popular choice because it is usually faster and better than full-
gradient methods. We have proved that synaptic sampling in Eq.(2) is equal to
on-line synaptic sampling. We also apply our noise to three-layer network with
back propagation algorithm and explore the meaning of noise parameter from a
new perspective of view.
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