
Interpretable Dynamics Models for
Data-Efficient Reinforcement Learning

Markus Kaiser1,2∗ and Clemens Otte1 and Thomas Runkler1,2 and Carl Henrik Ek3

1- Siemens AG, Germany. 2- Technical University of Munich, Germany.
3- University of Bristol, United Kingdom.

Abstract. In this paper, we present a Bayesian view on model-based
reinforcement learning. We use expert knowledge to impose structure on
the transition model and present an efficient learning scheme based on
variational inference. This scheme is applied to a heteroskedastic and
bimodal benchmark problem on which we compare our results to NFQ
and show how our approach yields human-interpretable insight about the
underlying dynamics while also increasing data-efficiency.

1 Introduction

In reinforcement learning (RL) [8], an agent’s task is to learn a policy π which,
given the current state s of an environment, chooses an action a to achieve the goal
specified by a reward function r mapping states to numerical rewards. The next
state s′ = f(s, a) is determined by the latent and possibly stochastic transition
function f . We consider batch RL problems [6], where we are presented with a
set of state transitions D = {(sn, an, s′

n)}N
n=1 and are unable to interact with the

original system to find a policy. This setup is common in industrial applications
of RL, where deploying an untrusted policy can lead to safety issues. Similarly,
gathering exploration data can be costly, calling for data-efficient methods.

Deisenroth et al. [2] showed how data-efficiency in model-based RL can be
increased with probabilistic models for the transition dynamics f . They provide
a principled way of taking model uncertainty into account when evaluating
the performance of a policy, thereby reducing the impact of model-bias. A
shortcoming of this approach is the limitations put on modelling choices by
the inference scheme. Transition dynamics are modelled as standard Gaussian
processes (GPs) and policies and rewards must be of specific forms. In this work,
we extend this approach by allowing and imposing additional structure. In many
environments, experts can describe abstract properties of the system even if
no closed form models are available. Incorporating this knowledge facilitates
learning and allows us to precisely state what we want to learn from data.

The paper is outlined as follows. After introducing the heteroscedastic and
bimodal Wet-Chicken benchmark, we show how high-level knowledge about this
system can be used to impose Bayesian structure. We derive an efficient inference
scheme for both the dynamics model and for probabilistic policy search based on
variational inference. We show that this approach yields interpretable models and
policies and is significantly more data-efficient than less interpretable alternatives.

∗The project this report is based on was supported with funds from the German Federal
Ministry of Education and Research under project number 01 IS 18049 A.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

7

2 The Wet-Chicken Benchmark

In the Wet-Chicken problem [3], a canoeist is paddling in a two-dimensional river.
The canoeist’s position at time t is given by st = (xt, yt), where xt denotes the
position along the river and yt the position across it. The river is bounded by
its length l = 5 and width w = 5. There is a waterfall at the end of the river at
x = l. The canoeist wants to get close to the waterfall to maximize the reward
r(st) = xt. However, if the canoeist falls down the waterfall he has to start over
at the initial position (0, 0).

The river’s flow consists of a deterministic velocity vt = yt · 3/w and stochastic
turbulence bt = 3.5 − vt, both of which depend on the position on the y-axis. The
higher yt the faster the river flows but also the less turbulent it becomes. The
canoeist chooses his paddle direction and intensity via an action at = (at,x, at,y) ∈
[−1, 1]2. The transition function f : (st, at) 7→ st+1 = (xt+1, yt+1) is given by

xt+1 =


0 if x̂t+1 > l

0 if x̂t+1 < 0
x̂t+1 otherwise

yt+1 =


0 if x̂t+1 > l or ŷt+1 < 0
w if ŷt+1 > w

ŷt+1 otherwise
(1)

where x̂t+1 = xt+(1.5·at,x−0.5)+vt+bt ·τt and ŷt+1 = yt+at,y and τt ∼ U(−1, 1)
is a uniform random variable that represents the turbulence.

There is almost no turbulence at y = w, but the velocity is too high to paddle
back. Similarly, the velocity is zero at y = 0, but the canoeist can fall down the
waterfall unpredictably due to the high turbulence. A successful canoeist must
find a trade-off between the stochasticity and uncontrollable velocities in the
river to get as close to the waterfall as possible.

3 Probabilistic Policy Search

We are interested in finding a policy specified by the parameters θπ which
maximizes the discounted return Jπ(θπ) =

∑T
t=0 γtr(st) =

∑T
t=0 γtrt. Starting

from an initial state s0 we generate a trajectory of states s0, . . . , sT obtained by
applying the action at = π(st) at every time step t. The next state is generated
using the (latent) transition function f , yielding st+1 = f(st, at).

Many environments have stochastic elements, such as the random drift in the
Wet-Chicken benchmark from Section 2. We take this stochasticity into account
by interpreting the problem from a Bayesian perspective where the discounted
return specifies a generative model whose graphical model is shown in Fig. 1.
Because of the Markov property assumed in RL, conditional independences
between the states yield a recursive definition of the state probabilities given by

p(st+1 |f, θπ) =
∫

p(f(st, at) |st, at) p(at |st, θπ) p(st) dat dst,

p(rt |θπ) =
∫

p(r(st) |st) p(st |θπ) dst.

(2)

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

8

s0 s1 s2 sT

r0 r1 r2 rT

Jπ

a0 a1

θπ

K

st at

st+1

f (k)

t σ(k)

t

s(k)

t+1

λ(k)

t

lt

Fig. 1: The graphical models considered in this work, where violet nodes are
observed, parameters are shown in yellow and variational parameters are blue.
The generative process for the return Jπ (left) shows how starting from s0, a
trajectory of length T is generated with the policy parameterized by θπ. The
return is generated by the rewards which depend on their respective states only.
The transition model (right) separates the flow-behaviour of the river ft, the
heteroscedastic noise process σt and the possibility of falling down λt. Latent
variables lt represent the belief that the tth data point is a fall-down event.

With stochasticity or an uncertain transition model, the discounted return
becomes uncertain and the goal can be reformulated to optimizing the expected
return E[Jπ(θπ)] =

∑T
t=0 γt Ep(st|θπ)[rt].

A model-based policy search method consists of two key parts [2]: First, a
dynamics model is learned from state transition data. Second, this dynamics
model is used to learn the parameters θπ of the policy π which maximize the
expected return E[Jπ(θπ)]. We discuss both steps in the following.

3.1 An Interpretable Transition Model

We formulate a probabilistic transition model based on high-level knowledge
about the Wet-Chicken benchmark. Importantly, we do not formulate a specific
parametric dynamics model as would be required to derive a controller. Instead,
we make assumptions on a level typically available from domain experts.

We encode that given a pair of current state and action ŝt = (st, at), the next
state st+1 is generated via the combination of three things: the deterministic
flow-behaviour of the river ft, some heteroscedastic noise process σt and the
possibility of falling down λt. This prior imposes structure which allows us to
explicitly state what we want to learn from the data and where we do not assume
prior knowledge: How does the river flow? What kind of turbulences exist?
When does the canoeist fall down? How do the actions influence the system?

We formulate a graphical model in Fig. 1 based on the Multi-Modal Deep

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

9

GP model [5], which allows us to handle the multi-modality introduced by falling
down the waterfall. We specify this separation via the marginal likelihood

p(st+1 | ŝt) =
∫

p(st+1 |σt, ft, lt) p(σt | ŝt) p(ft | ŝt) p(lt | ŝt) dσt dlt dft,

p(st+1 |σt, ft, lt) =
K∏

k=1
N

(
st+1

∣∣∣f (k)
t ,

(
σ(k)

t

)2
)I(l

(k)
t =1)

,

(3)

where ft =
(
f (1)

t , . . . , f (K)
t

)
and p(lt | ŝt) =

∫
M(lt |softmax(λt)) p(λt | ŝt) dλt

with M denoting a multinomial distribution. In our case, we use K = 2 modes,
one for staying in the river and one for falling down the waterfall. For every
data point we infer a posterior belief p(lt) about which mode the data point
belongs to as we assume this separation can not be predetermined using expert
knowledge. We place independent GP priors on the f (k), σ(k) and λ(k).

We approximate the exact posterior via a factorized variational distribution
q(f , λ, σ, U) =

∏K
k=1

∏T
t=1 q(f (k)

t , u(k)) q(λ(k)
t , u(k)

λ) q(σ(k)
t , u(k)

σ) which introduces
variational inducing inputs and outputs U as described in [4, 5]. The variational
parameters are optimized by minimizing a lower bound to the marginal likelihood
which can be efficiently computed via sampling and enables stochastic optimiza-
tion. For details we refer to [5]. We obtain an explicit representation of the GP
posteriors during variational inference which allows us to efficiently propagate
samples through the model to simulate trajectories used for policy search.

3.2 Policy Learning

After training a transition model, we use the variational posterior q(st+1 | ŝt)
to train a policy by sampling roll-outs and optimizing policy parameters via
stochastic gradient descent on the expected return E[Jπ(θπ)]. The expected
return is approximated using the variational posterior given by

E[Jπ(θπ)] =
T∑

t=0
γt Ep(st|θπ)[rt] ≈

T∑
t=0

γt Eq(st|θπ)[rt]

=
∫ T∑

t=0

[
γt Eq(st|θπ)[rt]

]
p(s0)

T −1∏
t=0

q(st+1 |st, θπ) ds0 . . . dsT

≈ 1
P

P∑
p=1

T∑
t=0

γtrp
t .

(4)

We expand the expectation to explicitly show the marginalization of the states
in the trajectory. Due to the Markovian property of the transition dynamics,
the integral factorizes along t. The integral is approximated by averaging over
P samples propagated through the model starting from a known distribution
of initial states p(s0). State transitions can efficiently be sampled from the
variational posterior of the dynamics model by repeatedly taking independent
samples of the different GPs.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

10

0 2.5 5

0

2.5

5
waterfall

y

x

0.2

0.4

0.6

0.8

(a) Fall-down probability λ

0 2.5 5

waterfall

y

0.5

1

(b) heteroscedastic turbulence σ(1)

N NFQ GP MDGP

100 0.66 ± 0.16 1.41 ± 0.01 1.18 ± 0.09
250 1.71 ± 0.07 1.54 ± 0.01 2.33 ± 0.01
500 1.60 ± 0.10 1.56 ± 0.01 2.25 ± 0.01
1000 1.99 ± 0.06 2.13 ± 0.01 2.32 ± 0.01
2500 2.26 ± 0.02 1.91 ± 0.01 2.28 ± 0.01
5000 2.33 ± 0.01 1.91 ± 0.01 2.28 ± 0.01

(c) Comparison of expected returns

0 2.5 5

0

2.5

5
waterfall

y

x

(d) A successful Wet-Chicken policy

Fig. 2: The separation of different aspects of the Wet-Chicken benchmark yields
interpretable information about the probability to fall down the waterfall and the
turbulence intensity. Successful policies can be learned based on 250 observations,
while about 2500 observations are needed for NFQ.

The expected return in (4) can be optimized using stochastic gradient de-
scent via the gradients ∇θπ

Jπ(θπ) ≈ 1
P

∑P
p=1

∑T
t=0 γt∇θπ

rp
t of the Monte Carlo

approximation as they are an unbiased estimator of the true gradient. The gradi-
ents of the samples can be obtained using automatic differentiation tools such as
TensorFlow [1]. The P roll-outs can trivially be parallelized. Importantly, we
only need a small number of Monte Carlo samples at every iteration, since we
use the gradients of the samples directly.

4 Results

To solve the Wet-Chicken problem, we first train the dynamics model on batch
data sampled from the true dynamics. The benchmark has a two-dimensional
state and action spaces from which we sample uniform random transitions with
varying N in the range 100 to 5000. With N ≥ 250, our model is able to identify
the underlying dynamics. Figures 2a and 2b show how the model has successfully
identified the probabilities of falling down the waterfall and the amplitude of
turbulence, both with respect to the action (0, 0). We are presented with easily
separable posterior belief about different aspects of the Wet-Chicken benchmark.
This belief can be reasoned about with experts to evaluate the training result.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

11

Next, we train a neural policy. We sample initial states from the training data,
use a horizon of T = 5 steps and average over P = 20 samples with γ = 0.9. We
use a two-layer neural network with 20 ReLU-activated units each as our policy
parametrization. Figure 2d shows an example policy with a trade-off between
the unpredictability on the left and the uncontrollable speed on the right.

In Table 2c, we show expected returns averaged over 10 experiments with
standard errors. Applying random actions yields a return of about 1.5 and a
return above 2.2 indicates that a proper trade-off has been found. We compare
our method to a standard GP as the dynamics model and to the model-free
NFQ [7] trained for 20 full model learning and sampling iterations using a
neural network with one 10-unit hidden layer with sigmoid activations. The
GP cannot model heteroscedastic noise or multi-modality. It does not represent
the dynamics well enough to derive a policy, illustrating our need for a more
structured model. Given enough data, NFQ is able to find successful policies.
However, our method requires about an order of magnitude less data, due to the
high-level prior knowledge incorporated via the dynamics model.

5 Conclusion

In this paper, we demonstrated how expert knowledge can be incorporated
in probabilistic policy search by imposing Bayesian structure on the learning
problem. We derived an efficient inference scheme and showed how our approach
can solve the Wet-Chicken benchmark, yielding human-interpretable insights
about the underlying dynamics and significantly increasing data efficiency.

References
[1] Martín Abadi et al. “TensorFlow: Large-Scale Machine Learning on Heterogeneous Sys-

tems”. In: (2015). Software available from tensorflow.org.
[2] Marc Deisenroth and Carl E. Rasmussen. “PILCO: A Model-Based and Data-Efficient

Approach to Policy Search”. In: Proceedings of the 28th International Conference on
Machine Learning (ICML-11). 2011, pp. 465–472.

[3] Alexander Hans and Steffen Udluft. “Efficient Uncertainty Propagation for Reinforcement
Learning with Limited Data”. In: International Conference on Artificial Neural Networks.
Springer, 2009, pp. 70–79.

[4] James Hensman, Alexander G. de G. Matthews, and Zoubin Ghahramani. “Scalable
Variational Gaussian Process Classification”. In: Journal of Machine Learning Research
38 (2015), pp. 351–360.

[5] Markus Kaiser et al. “Data Association with Gaussian Processes”. In: (Oct. 16, 2018).
arXiv: 1810.07158 [cs, stat].

[6] Sascha Lange, Thomas Gabel, and Martin Riedmiller. “Batch Reinforcement Learning”.
In: Reinforcement Learning. Springer, 2012, pp. 45–73.

[7] Martin Riedmiller. “Neural Fitted Q Iteration - First Experiences with a Data Efficient
Neural Reinforcement Learning Method”. In: European Conference on Machine Learning.
Springer, 2005, pp. 317–328.

[8] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
Adaptive Computation and Machine Learning. Cambridge, Mass: MIT Press, 1998.
322 pp. isbn: 978-0-262-19398-6.

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence
and Machine Learning. Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0.
Available from http://www.i6doc.com/en/.

12

https://arxiv.org/abs/1810.07158

	Introduction
	The Wet-Chicken Benchmark
	Probabilistic Policy Search
	An Interpretable Transition Model
	Policy Learning

	Results
	Conclusion

