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Abstract. Real-Time-Bidding (RTB) is one of the most popular online
advertisement selling mechanisms. Modeling the highly dynamic bidding
environment is crucial for making good bids. Market prices of auctions
fluctuate heavily within short time spans. State-of-the-art methods neglect
the temporal dependencies of bidders’ behaviors. In this paper, the bid
requests are aggregated by time and the mean market price per aggregated
segment is modeled as a time series. We show that the Long Short Term
Memory (LSTM) neural network outperforms the state-of-the-art univari-
ate time series models by capturing the nonlinear temporal dependencies
in the market price. We further improve the predicting performance by
adding a summary of exogenous features from bid requests.

1 Introduction

In recent years the programmatic trading paradigm has become dominant in the
online advertising industry. Unlike in the contextual advertising [1], where the
ad is associated with the content of the webpage, or in the sponsored search [2]
where the bidding target is the searching keyword, in Real-Time Bidding (RTB)
system, the ad impressions are sold individually upon each user’s visit. Once
a user opens a webpage, the browser sends the user profile combined with the
description of the publisher to an Ad Exchange (ADX) asking for a suitable ad.
The ADX distributes the requests to different advertisers. Usually, a Demand-
side-Platform (DSP) on behalf of advertisers receives such requests and sends a
bid price back to the ADX for each ad display opportunity. In RTB, the most
popular type of auction is the Vickrey auction, a.k.a the second-price auction [3].
In these auctions, the winner is the one with the highest bid and pays the second
highest bid, called the winning price or the market price. In case of losing, the
market price is not observable to the bidder. The ADX notifies the winner the
market price it needs to pay and the publisher shows the winner’s ad on its page.
Depending on the advertiser’s target, the DSP only gets paid when users click
the ad or accomplish certain conversions. By receiving the user’s activity from
the advertisers, the DSP adjusts its bidding strategy towards targeting the users
who generate more profits.
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The goal of a DSP is to bid strategically and maximize its profits given a
limited budget in the highly dynamic bidding environment. A key component
in the bidding strategy design is the market price modelling which provides
reference for estimating the winning probability of the proposed bid price. The
underlying dynamics of the bidding market can be mainly attributed to the
hybrid bidding strategies used by all the bidders. In addition, publishers also
adjust their pricing model to set a minimum price to pay which is known as a
floor price [4]. Therefore, besides other bidders, publishers also optimize their
strategies introducing more uncertainties into the bidding environment.

Many studies addressed the bidding strategies optimization problem in RTB [5,
6, 7], in which, the market model is taken from a statistic counting based esti-
mation. The temporal dependency of the market price has been neglected. The
authors in [4] show their data has a strong autocorrelation of the market price on
an hourly scale. Inspired by this work, and based on our observation of the price
dispersion on a per bid request basis, we aggregate bid requests by time and
formulate a time series of the averaged market price per aggregated segment. In
this paper, we first adopt an univariate LSTM-based Recurrent Neural Network
(RNN) to predict the market price, and demonstrate that the volatility of the
market price can be implicitly captured by exogenous variables like user features
in bid requests.

2 Related Work

Market price estimation is one of the key components of bidding strategies op-
timization in online advertising. It is straightforward to model the winning
probability of a certain bid price by taking the c.d.f. of the market price distri-
bution. Many work in the RTB fields directly define a function to approximate
the convex form of the winning probability [5] or adopt the non-parametric
Kaplan-Merier estimator to get the market price distribution [8, 9]. For one ad
campaign, it may target various user groups and compete with different bidders
in every auction. It results in different winning probabilities with the same bid
price. However, the temporal dynamics of the market price have been largely
neglected in the previous studies. One of these few studies demonstrates how
Generalized Linear Models (GLM) can infer the mean shift of the market price
as a function of the floor price set by the publisher [4]. Our motivation to ad-
dress temporal aspects of RTB in this work is motivated by observations in this
study.

3 Problem Formulation

In the RTB system, each ad campaign keeps participating in the online auctions
until its budget exhausts. In theory, to reach the Nash equilibrium in the second
price auction, all the bidders are encouraged to submit their estimation of im-
pression’s true value as the bid price [3]. However, in practice, the behaviour of
each bidder is highly constraint by its budget setting. Due to the high volatility
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Fig. 1: Number of impressions per second

in the bidding market, predicting the winning price for each individual request
can be very challenging. Instead, we propose to model the market price at an
aggregate level in the temporal domain.

Figure 1 shows the number of impressions per second from an ad campaign in
our dataset. The traffic volume varies across different ad campaigns. Since the
number of auctions on different time scale varies over time, to keep the number
of auctions in each segment constant, we aggregate auctions by the window size
100, 500, and 1000. The average market price (mt) of each window is modeled
as a time series.

3.1 Baseline: Autoregressive Model

We take the series of mt and fit the Autoregressive Integrated Moving Average
(ARIMA) model as the baseline to forecast the mean market price per window
as an univariate model. As the name suggested, an ARIMA model consists
of three parts and is specified by the autoregressive order p, the non-seasonal
difference order d, and the order of prediction error q. The model is defined as:
yt = c + φ1yt−1 + φ2yt−2 + ... + φpyt−p − θ1εt−1 − ... − θqεt−q, where ε is the
prediction error at each time step. In the experiment, the parameters are set to
be p, d, q = 1, 0, 0.

3.2 Recurrent Neural Networks

Recurrent neural networks (RNN) [10] is designed for learning the non-linear
long term dependencies in sequential data. As a variant of RNN, the Long Short
Term Memory (LSTM) model [11] improves selective recall of useful information
in long sequences. The inputs y1, ..., yt−1 are the historical market prices prior
to time t.

3.3 Integration of Exogenous Features

The previous two models only focus on modeling the price without considering
other variables. However, the information in the bid request is one of the key
sources for each bidder to set its bid price. Therefore, we further investigate how
the additional information in the bid requests contribute to the price prediction.
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Based on the aggregation setting in this work, we summarize the features
from each request into a vector per window to describe the heterogeneous envi-
ronment. For each feature, we calculate a window-based histogram of the feature
values. Non-observed values in a window remain as zero. The histograms of each
feature are concatenated into one vector. In this case, we ensure that the di-
mension of the input vector is the total number of unique feature values and
remains the same. In addition, we concatenate a series of market price prior to
the prediction time to the feature vector. The historical market price indicates
the past trend of the price. The combined input is fed into a LSTM layer and the
target value is the averaged market price. We denote the model as LSTM(X).

xt = [0.1, ..., 0.2, ...0
︸ ︷︷ ︸

city,
∑

=1

, 0.2, .., 0.4
︸ ︷︷ ︸

browser,
∑

=1

, ..., y1, ...yt−1]

4 Experiments

In this section, we describe the dataset and discuss the results of three experi-
ments based on ARIMA, LSTM, and LSTM(X) models as outlined before.

4.1 Dataset

In our experiments, we use a public RTB dataset. It was released by iPinYou, a
leading RTB company in China and contains 19.5M impressions, 15K clicks and
1.2K conversions over 9 ad campaigns. The iPinYou dataset contains winning
bid requests with their market price and the feedback from the end users, namely
the clicks and conversions.

Each bid request contains features including profiles of the user, the pub-
lisher, and the ad slot. The user profile includes weekday, hour, user agent, IP
address, region, city. The publisher is represented by domain, url, ad exchange
ID and the ad slot is described by slot size, format, advertiser, creative ID . We
included all the features above excluding the ones with high variety: IP address
and URL. The train and test data are split by the time sequence, as is shown in
[12].

Table 1: MSE of
ARIMA model

campaign
window size

100 500 1000
MSE MSE MSE

3358 159.75 211.07 279.11
3386 158.14 214.14 294.33
3427 176.05 235.17 263.70
3476 190.06 231.96 227.09
1458 153.49 158.94 129.44
2259 185.69 38.86 32.36
2261 174.88 43.10 27.66
2821 346.95 38.92 27.79
2997 76.86 20.35 13.66

Table 2: Comparing
ARIMA and LSTM

campaign
window size

100 500 1000
Improves over ARIMA (%)

3358 -10.28 2.17 5.16
3386 7.02 5.42 13.12
3427 -1.64 4.56 14.02
3476 11.92 36.48 44.12
1458 13.26 24.10 20.56
2259 59.18 7.89 12.06
2261 64.64 37.09 21.73
2821 22.34 -29.43 -42.02
2997 63.26 -3.65 -28.26

Table 3: Comparing
LSTM and LSTM(X)

campaign
window size

100 500 1000
Improves over LSTM (%)

3358 -0.45 27.20 17.79
3386 10.01 63.17 144.01
3427 6.55 18.28 32.29
3476 17.69 76.76 66.79
1458 0.52 9.41 8.99
2259 17.86 34.24 -36.87
2261 -36.89 -21.13 -54.39
2821 83.41 87.79 46.21
2997 -22.65 -40.08 -50.68
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Fig. 2: Market price prediction by LSTM model with window size 500

4.2 Results and Discussions

The prediction of mean market price per window from the ARIMA model is listed
in Table 1 with evaluation metric Mean Squared Error (MSE). For comparison,
the results of a LSTM model are shown as a percentage of improvements, rel-
ative to the results of ARIMA model in Table 2. Positive number means the
percentage of the decrease of MSE and vice versa. We take market prices from
10 previous windows as a sequence to predict the price for the next window.
Using longer history, like 20 or 50 windows, does not improve the results any
further, which suggests short dependency in the temporal space.

Our results show that in most cases, the LSTM model improves the predic-
tion results significantly. It demonstrates the benefits of memorizing more time
steps for the prediction. However, there are also performance drops at different
aggregation levels in a few campaigns, e.g. 2821 and 2997. We further checked
the number of auctions per second for these campaigns. It shows that the pat-
tern of request arrival rate increases or decreases dramatically from training set
to test set. In our settings, the window size is fixed. Therefore, with larger
window size, the time span in one window varies in this case. The time series
model learned in training set fails to capture the changed pattern in the test
set. For the other campaigns, the amount of bid requests per second over time
remains relatively stable. Given our observations, there is a need to predict the
traffic pattern as well, which we did not address in this work. Figure 2 shows
the true average market price per window (blue) and the predicted value (red).

ESANN 2019 proceedings, European Symposium on Artificial Neural Networks, Computational  Intelligence 
and Machine Learning.  Bruges (Belgium), 24-26 April 2019, i6doc.com publ., ISBN 978-287-587-065-0. 
Available from http://www.i6doc.com/en/.

647



Furthermore, we demonstrate how the features in the bid requests contribute
to the market price prediction as described in sec.3.3. Table 3 compares the
MSE between the results of LSTM taking only historical market price as input
and the LSTM model with features in the bid request, LSTM (X). The results
clearly show improvements with additional features. However, campaigns 2261
and 2997 have negative results, meaning including additional features increased
prediction error. As shown in Figure 2, the mean market price per window in
these two campaigns shows very little fluctuation, which suggests a relatively
steady environment. In this case, adding additional information from the bid
request may perturb the model and jeopardize prediction accuracy. On the
contrary, for the campaigns with high volatility, the summary of the requests
manages to capture the sudden change in the market.

5 Conclusions and Future work

We provide a temporal market price prediction model for RTB system. Because
the dynamics of the market are due to heterogeneous factors such as unknown
bidders and different user profiles, we further demonstrate how the information
from aggregated bid requests contribute to predicting the volatility of the market.
Measuring the uncertainty of the predictions and integrating the price prediction
into bidding will be included in the future work.
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