• Log In
ESANN 2025
  • Home
      • Latest news
  • Submit a paper
      • Call for papers
      • Special sessions
      • Author guidelines
      • Ethics
      • Submissions
  • Program
  • Participate
      • Format of the conference
      • Registration
      • Information for speakers
  • The event
      • Venue
      • About Bruges
      • Hotels
      • Conference commitees
      • Sponsors
      • Contacts
  • Past ESANN
      • ESANN conferences
      • Proceedings
  • My ESANN
close× Call Us +1 (777) 123 45 67
close×

ESANN 2005 programme

Wednesday 27 April 2005
8h30 Registration
9h00 Opening
Session1: Clustering, quantization, and self-organization
09h10 Architecture of emergent self-organizing maps to reduce projection errors
A. Ultsch, L. Herrman, Univ. Marburg (Germany)
09h30 A new learning algorithm for incremental self-organizing maps
Y. Prudent, A. Ennaji, PSI Lab. (France
09h50 The dynamics of Learning Vector Quantization
M. Biehl, A. Ghosh, Univ. Groningen (The Netherlands), B. Hammer, Clausthal Univ. Tech. (Germany)
10h10 TreeGNG - hierarchical topological clustering
K. Doherty, R. Adams, N. Davey, Univ. Hertfordshire (U.K.)
10h30 Coffee break

Special session 2: Dynamical and Numerical Aspects of Neural Computing
Organized by M. Atencia, Univ. Malaga, Spain

10h50 Two or three things that we (intend to) know about Hopfield and Tank networks
M. Atencia, G. Joya, F. Sandoval, Univ. Málaga (Spain)
11h10 The Nonlinear Dynamic State neuron
N. Crook, W. J. Goh, M. Hawarat, Oxford Brookes Univ. (U.K.)
11h30 Stability of backpropagation-decorrelation efficient O(N) recurrent learning
J. J. Steil, Bielefeld Univ. (Germany)
12h10 Stochastic analysis of the Abe formulation of Hopfield networks
M. Kratz, Univ. René Descartes, Paris V (France), M. Atencia, G. Joya, Univ. Málaga (Spain)
Poster spotlights
Poster spotlights
12h30 Using generic neural networks in the control and prediction of grasp postures
F. Carenzi, P. Gorce, LESP, Y. Burnod, M. Maier, Inserm (France)
12h31 Exponential stability of stochastic cellular neural networks
M. Joy, Kingston Univ. (U.K.)
12h35 Lunch
Session 3: Learning
14h00 Organization properties of open networks of cooperative neuro-agents
J.P. Manu, P. Glize, Univ. Paul Sabatier (France)
14h20 A ridgelet kernel regression model using genetic algorithm
S. Yang, M. Wang, L. Jiao, Xidian Univ. (China)
14h40 Boosting by weighting boundary and erroneous samples
V. Gómez-Verdejo, M. Ortega-Moral, J. Arenas-García, A. R. Figueiras-Vidal, Univ. Carlos III de Madrid (Spain)
Special session 4: Artificial Neural Networks and Prognosis in Medicine
Organized by J.M. Jerez, Univ. Malaga, Spain, L. Franco, Univ. Oxford, U.K.
15h00 Artificial neural networks and prognosis in medicine. Survival analysis in breast cancer patients
J. Jerez, Univ. Málaga (Spain), L. Franco, Oxford Univ. (U.K.), E. Alba, Hosp. Univ. Málaga (Spain)
15h20 An artificial neural network for analysing the survival of patients with colorectal cancer
R. Bittern*, A. Cuschieri*, S. Dolgobrodov, R. Marshall, P. Moore, Univ. Manchester (England), R. Steele, *Univ.Dundee (Scotland)
15h40 Artificial intelligence techniques for the prediction of bladder cancer progression
M. Abbod, J. W.F. Catto, M. Chen, D. A. Linkens, F. C. Hamdy, Univ. Sheffield (U.K.)
16h00 Artificial neural network modeling to predict extent of tumor in men with prostate cancer
E. Gamito, C. O'Donnell*, T. Ashutosh, Cornell Univ. (USA), D. Crawford, *Univ. Colorado (USA)
16h20 Computational models of ICSI prognosis
H. Liu, A. Kshirsagar*, J. Ku, D. Lamb, Baylor Coll. Medicine (USA), C. Niederberger, *Univ. Illinois Chicago (USA)
16h40 Handling outliers and missing data in brain tumour clinical assessment using t-GTM
A. Vellido*, P. J.G. Lisboa, Liverpool John Moores Univ. (England), D. Vicente, *Polytec. Univ. Catalonia (Spain)
Poster spotlights
17h00 Predicting bed demand in a hospital using neural networks and arima models: a hybrid approach
M. Joy, S. Jones, Kingston Univ. (U.K.)
17h01 Functional topographic mapping for robust handling of outliers in brain tumour data
A. Vellido, Polytec. Univ. Catalonia (Spain), P. J.G. Lisboa, Liverpool John Moores Univ. (England)
17h02 Relevance learning for mental disease classification
B. Hammer, Clausthal Univ. Tech. (Germany), A. Rechtien, Univ. Osnabrueck (Germany), M. Strickert, IPK (Germany), T. Villmann, Univ. Leipzig (Germany)
17h03 Automatic classification of prostate cancer using pseudo-gaussian radial basis function neural network
O. Valenzuela, I. Rojas, F. Rojas, L. Marquez, Univ. Granada (Spain)
Session 5: Posters I
17h04 Artificial neural network fusion: Application to Arabic words recognition
N. Farah, M. T. Khadir, Univ. Badji Mokhtar Annaba (Algeria)
17h05 Adaptive Simultaneous Perturbation Based Pruning Algorithm for Neural Control Systems
J. Ni, O. Song, Nanyang Tech. Univ. (Singapore)
17h06 Modified backward feature selection by cross validation
S. Abe, Kobe Univ. (Japan)
17h07 Initialisation improvement in engineering feedforward ANN models
A. Krimpenis, G.-C. Vosniakos, Nat. Tech. Univ. Athens (Greece)
17h08 An On-line Fisher Discriminant
M. Ortega-Moral, V. Gómez-Verdejo, J. Arenas-García, A. R. Figueiras-Vidal, Univ. Carlos III de Madrid (Spain)
17h09 Averaging on Riemannian manifolds and unsupervised learning using neural associative memory
D. Nowicki, O. Dekhtyarenko, Nat. Acad. Sci. (Ukraine)
17h10 A Stability Condition for Neural Network Control of Uncertain Systems
P. Clawom, Rajamangala Inst. Tech., S. Kuntanapreeda, King Mongkuts Inst. Tech. North Banghkok (Thailand)
17h11 A new approach based on wavelet-ica algorithms for fetal electrocardiogram extraction
B. Azzerboni, F. La Foresta*, Univ. Messina, , N. Mammone, F. C. Morabito, *Univ. Mediterranea of Reggio Calabria (Italy)
17h12 Graph-based normalization
C. Aaron, Univ. Paris 1 (France)
17h13 Domain expert approximation through oracle learning
J. Menke, T. Martinez, Brigham Young Univ. (USA)
17h14 Generalised Cross Validation for Noise-Free Data
T. Dodd, T. Ladoni, Univ. Sheffield (U.K.)
17h15 Coffee break and poster preview
Thursday 28 April 2005
Session 6: Perceptrons and Multi-Layer Perceptrons
09h00 Neural network classification using Shannon's entropy
L. Silva, J. M. Sá, Univ. Porto (Portugal), L. Alexandre, IT Covilhã (Portugal)
09h20 Efficient estimation of multidimensional regression model with multilayer perceptron
J. Rynkiewicz, Univ. Paris I (France)
09h40 Performance of EMI based mine detection using back-propagation neural networks
M. Draper, T. Kocak, Univ. Central Florida (USA)
10h00 Perceptron Learning with Discrete Weights
J. M. Sá, C. Felgueiras, Univ. Porto (Portugal)
10h20 Coffee break
Special session 7: Evolutionary and neural computation
Organized by C. Igel, Ruhr-Univ. Bochum, B. Sendhoff, Honda Research Inst. Europe (Germany)
10h50 Synergies between Evolutionary and Neural Computation
C. Igel, Ruhr-Univ. Bochum, B. Sendhoff, Honda Research Inst. Europe (Germany)
11h10 Evolutionary framework for the construction of diverse hybrid ensembles
A. Chandra, X. Yao, Univ. Birmingham (U.K.)
11h30 Efficient reinforcement learning through Evolutionary Acquisition of Neural Topologies
Y. Kassahun, G. Sommer, Christian Albrechts Univ. (Germany)
11h50 Evolving neural networks: Is it really worth the effort?
J. Bullinaria, Univ. Birmingham (U.K.)
Poster spotlights
12h10 Efficient evolutionary optimization using individual-based evolution control and neural networks: A comparative study
L. Graening, Tech. Univ. Ilmenau, Y. Jin, B. Sendhoff, Honda Res. Inst. Europe (Germany)
12h11 Applications of multi-objective structure optimization
A. Gepperth, S. Roth, Ruhr-Univ. Bochum (Germany)
12h15 Lunch
Session 8: Independent Component Analysis
13h45 Empirical evidence of the linear nature of magnetoencephalograms
A. Honkela, T. Östman, R. Vigário, Helsinki Univ. Tech. (Finland)
14h05 To apply score function difference based ICA algorithms to high-dimensional data
K. Zhang, L.-W. Chan, Chinese Univ. Hong Kong (China)
14h25 Generative Independent Component Analysis for EEG classification
S. Chiappa, D. Barber, IDIAP Res. Inst. (Switzerland)
Special session 9: Classification using non-standard metrics
Organized by B. Hammer, Clausthal Univ. Tech., T. Villmann, Univ. Leipzig (Germany)
14h45 Classification using non-standard metrics
B. Hammer, Clausthal Univ. Tech., T. Villmann, Univ. Leipzig (Germany)
15h15 Clustering using a random walk based distance measure
L. Yen, D. Vanvyve, F. Wouters, F. Fouss, M. Verleysen, M. Saerens, Univ. cat. Louvain (Belgium)
15h35 A probabilistic framework for mismatch and profile string kernels
A. Vinokourov*, A. Soklakov, Royal Holloway, Univ. London, C. Saunders, *Univ. Southampton (U.K.)
15h55 Generalized Relevance LVQ with Correlation Measures for Biological Data
M. Strickert, N. Sreenivasulu, W. Weschke, U. Seiffert, IPK-Gatersleben T. Villmann, Univ. Leipzig (Germany)
Poster spotlights
16h15 Non-Euclidean metrics for similarity search in noisy datasets
D. Francois, V. Wertz, M. Verleysen, Univ. cat. Louvain (Belgium)
16h16 Fuzzy ROC Curves for the One Class SVM: Application to Intrusion Detection
P. Evangelista, P. Bonissone, M. Embrechts, B. Szymanski, Rensselaer Polyt. Inst. (USA)
16h17 Fuzzy Proximal Support Vector Classification via Generalized Eigenvalues
J. Jayadeva, R. Khemchandani, S. Chandra, Indian Inst. Tech. Delhi (India)
16h18 Usage Guided Clustering of Web Pages with the Median Self Organizing Map
F. Rossi, A. El Golli, Y. Lechevallier, INRIA Rocquencourt (France)
16h19 Mixed Topological Map
M. Lebbah*, A. Chazottes*, F. Badran, CNAM (France), S. Thiria, *Univ. Paris 6 France)
16h20 Linear algebra for time series of spikes
A. Carnell, R. Daniel, University of Bath (U.K.)
Session 10: Posters II
16h21 Relevance determination in reinforcement learning
K. Tluk v. Toschanowitz*, B. Hammer, Clausthal Univ. Tech., H. Ritter, *Univ. Bielefeld (Germany)
16h22 Feature selection for high-dimensional industrial data
M. Bensch, M. Schröder, M. Bogdan, W. Rosenstiel, Eberhard-Karls-Univ. Tübingen (Germany)
16h23 Adaptive robot learning in a non-stationary environment
K. Främling, Helsinki Univ. Tech. (Finland)
16h24 Phase transition in sparse associative neural networks
O. Dekhtyarenko, Nat. Acad. Sci. (Ukraine), T. Valery, C. Fyfe, Univ. Paisley (Scotland)
16h25 Neuromimetic model of interval timing
C. Touzet, P. Demoulin, Univ. Provence, B. Burle*, F. Vidal, IMNSSA, F. Macar, *Lab. Neurobiologie Cognition (France)
16h26 Contextual Processing of Graphs using Self-Organizing Maps
M. Hagenbuchner, Univ. Wollongong (Australia), A. Sperduti, Univ. Padova (Italy), A. C. Tsoi, Australian Res. Council (Australia)
16h27 Structural feature selection for wrapper methods
G. Bontempi, Univ. Libre Bruxelles (Belgium)
16h28 Coverage-performance estimation for classification with ambiguous data
T. Trappenberg, Dalhousie Univ. (Canada)
16h29 UWB radar target identification based on linear RBFNN
M. Wang, S. Yang, Xidian Univ. (China)
16h20 Coffee break and poster preview
Friday 29 April 2005
Session 11: Biologically inspired models
09h00 A multi-modular associator network for simple temporal sequence learning and generation
L. Michael, T. Trappenberg, A. Fine, Dalhousie Univ. (Canada)
09h20 Attractor neural networks with patchy connectivity
C. Johansson, M. Rehn, A. Lansner, Royal Inst. Tech. (Sweden)
09h40 Isolated word recognition using a Liquid State Machine
D. Verstraeten, B. Schrauwen, Ghent Univ. (Belgium)
10h00 New evidences for sparse coding strategy employed in visual neurons: from the image processing and nonlinear approximation viewpoint
S. Tan, L. Jiao, Inst. Intelligent Information Proc. (China)
10h20 Coffee break
Special session 12: Kernel methods and the exponential family
Organized by A. Smola, National ICT (Australia), S. Canu, INSA Rouen (France)
10h40 The exponential family and Kernels for learning
A. Smola, National ICT (Australia), S. Canu, INSA Rouen (France)
11h10 Joint Regularization
K. M. Borgwardt, Ludwig-Maximilians-Univ. (Germany), O. Guttman, S.V.N. Vishwanathan, A. Smola, National ICT (Australia)
11h30 A Class of Kernels For Sets of Vectors
F. Desobry*, M. Davy, CNRS - LAGIS (France), W. Fitzgerald, *Univ. Cambridge (U.K.)
11h50 Support Vector Machine For Functional Data Classification
N. Villa, Univ. Toulouse Le Mirail, F. Rossi, INRIA Rocquencourt (France)
12h10 Translation invariant classification of non-stationary signals
V. Guigue, A. Rakotomamonjy, S. Canu, PSI laboratory (France)
12h30 Lunch
Session 13: Applications
14h00 Chemical similarity searching using a neural graph matcher
S. Klinger, J. Austin, Univ. York (U.K.)
14h20 SVM and pattern-enriched common fate graphs for the game of go
L. Ralaivola, L. Wu, P. Baldi, Inst. Genomics Bioinformatics (USA)
14h40 Using CMU PIE Human Face Database to a Convolutional Neural Network - Neocognitron
J. H. Saito*, T. V. de Carvalho*, M. Hirakuri*, A. Saunite*, A. N. Ide, Univ. Genoa (Italy), S. Abib, *Federal Univ. São Carlos (Brazil)
15h00 Morphological memories for feature extraction in hyperspectral images
M. Graña, A. d'Anjou, X. Albizuri, Univ. Pais Vasco (Spain)
Session 14: Posters III
15h20 Mutual information and gamma test for input selection
N. Reyhani, J. Hao, Y. Ji, A. Lendasse, Helsinki Univ. Tech. (Finland)
15h21 Pruned lazy learning models for time series prediction
A. Sorjamaa, A. Lendasse, Helsinki Univ. Tech. (Finland), M. Verleysen, Univ. cat. Louvain (Belgium)
15h22 A new wrapper method for feature subset selection
N. Sánchez-Maroño, A. Alonso-Betanzos, Univ. A Coruña, E. Castillo, Univ. Cantabria (Spain)
15h23 Analysis of contrast functions in a genetic algorithm for post-nonlinear blind source separation
F. Rojas, C. García Puntonet, I. Rojas, Univ. Granada (Spain)
15h24 Sparse Bayesian promoter based gene classification
K. Khoon Lee, G. Cawley, Univ. East Anglia, M. Bevan, John Innes Inst. (U.K.)
15h25 Graph projection techniques for Self-Organizing Maps
G. Pölzlbauer, A. Rauber, Vienna Univ. Tech., M. Dittenbach, E-Commerce Competence Center (Austria)
15h26 A Neural Network that helps building a Nonlinear Dynamical model of a Power Amplifier
G. Stegmayer, Politec. Torino (Italy), O. Chiotti, Univ. Tec. Nacion. (Argentina), G. Orengo, Univ. Roma II (Italy)
15h27 Contextual priming for artificial visual perception
H. Guillaume, N. Denquive, P. Tarroux, LIMSI-CNRS (France)
15h28 Learning to classify a collection of images and texts
P. Saragiotis, B. Vrusias, K. Ahmad, University of Surrey (U.K.)
15h29 SOM computing on Graphic Process Unit
Z. Luo, L. Hongzhi, Z. Yang, X. Wu, China Univ. Geoscience Wuhan (P.R.China)
15h30 Novel Algorithm for Eliminating the Boundary Effect in Standard SOM
K. Marzouki, T. Yamakawa, Kyushu Inst. Tech. (Japan)
15h31 Adaline-based estimation of power harmonics
D. Ould Abdeslam, J. Mercklé, P. Wira, Univ. Mulhouse (France)
15h32 Rader target recognition using SVMs with a wrapper feature selection driven by immune clonal algorithm
X. Zhang, S. Wang, S. Tan, L. Jiao, Inst. Intelligent Information Proc. (China)
15h33 Experimental validation of a synapse model by adding synaptic conductances to excitable endocrine cells in culture
S. Boussa, M. Marin, F. LeFoll, A. Faure, F. Leboulanger, Univ. Havre (France)
15h34 Ultra-wideband Nearfield Adaptive Beamforming based on a RBF Neural Network
M. Wang, S. Yang, Xidian Univ. (China)
15h35 Support vector algorithms as regularization networks
A. Caponnetto, L. Rosasco, F. Odone, A. Verri, Univ. Genova (Italy)
15h36 STDP in 'small world' networks

K. Kube, A. Herzog, B. Michaelis, A. de Lima, T. Voigt, Otto-von-Guericke-Univ. Magdeburg (Germany)

15h40 Coffee break and poster preview
17h00 End of conference
Copyright © ESANN, 2019