• Log In
ESANN 2025
  • Home
      • Latest news
  • Submit a paper
      • Call for papers
      • Special sessions
      • Author guidelines
      • Ethics
      • Submissions
  • Program
  • Participate
      • Format of the conference
      • Registration
      • Information for speakers
  • The event
      • Venue
      • About Bruges
      • Hotels
      • Conference commitees
      • Sponsors
      • Contacts
  • Past ESANN
      • ESANN conferences
      • Proceedings
  • My ESANN
close× Call Us +1 (777) 123 45 67
close×

ESANN 2022 programme

Wednesday, 05.10.2022

09:00 Welcome session

09:10 Feature extraction & Prototype learning

09:10 Modular Representations for Weak Disentanglement

  • Andrea Valenti, Università di Pisa (Italy)
  • Davide Bacciu, University of Pisa (Italy)

09:30 Feature selection for transfer learning using particle swarm optimization and complexity measures

  • Verónica Bolón-Canedo, CITIC, Universidade da Coruña (Spain)
  • Guillermo Castillo García, Universidad Internacional Menéndez Pelayo (Spain)
  • Laura Morán-Fernández, CITIC, Universidade da Coruña (Spain)

09:50 Supervised dimensionality reduction technique accounting for soft classes

  • Sorina Mustatea, CEA (France)
  • Michael Aupetit, QCRI (Qatar)
  • Jaakko Peltonen, Tampere University (Finland)
  • Sylvain Lespinats, CEA (France)
  • Denys Dutykh, CNRS - University Savoie Mont Blanc (France)

10:10 Graph-Induced Geodesics Approximation for Non-Euclidian K-Means

  • Hervé Frezza-Buet, CentraleSupélec (France)

10:30 A WiSARD-based conditional branch predictor

  • Luis A. Q. Villon, Federal University of Rio de Janeiro (Brasil)
  • Zachary Susskind, The University of Texas at Austin (USA)
  • Alan T. L. Bacellar, Federal University of Rio de Janeiro (UFRJ) (Brasil)
  • Igor D. S. Miranda, Federal University of Recôncavo da Bahia (Brazil)
  • Leandro Santiago de Araújo, Universidade Federal Fluminense (Brazil)
  • Priscila Lima, Universidade Federal do Rio de Janeiro (Brazil)
  • Mauricio Breternitz Jr., Instituto Universitario de Lisboa (Portugal)
  • LIZY JOHN, The University of Texas at Austin (United States)
  • Felipe França, Universidade Federal do Rio de Janeiro (Brazil)
  • Diego Leonel Cadette Dutra, Federal University of Rio de Janeiro (Brasil)

10:50 Distributive Thermometer: A New Unary Encoding for Weightless Neural Networks

  • Alan T. L. Bacellar, Federal University of Rio de Janeiro (UFRJ) (Brasil)
  • Zachary Susskind, The University of Texas at Austin (USA)
  • Luis A. Q. Villon, Federal University of Rio de Janeiro (Brasil)
  • Igor D. S. Miranda, Federal University of Recôncavo da Bahia (Brazil)
  • Leandro Santiago de Araújo, Universidade Federal Fluminense (Brazil)
  • Diego Leonel Cadette Dutra, Federal University of Rio de Janeiro (Brasil)
  • Mauricio Breternitz Jr., Instituto Universitario de Lisboa (Portugal)
  • LIZY JOHN, The University of Texas at Austin (United States)
  • Priscila Lima, Universidade Federal do Rio de Janeiro (Brazil)
  • Felipe França, Universidade Federal do Rio de Janeiro (Brazil)

11:10 Feature extraction & Prototype learning - Poster spotlights

11:10 Pruning Weightless Neural Networks

  • Zachary Susskind, The University of Texas at Austin (USA)
  • Alan T. L. Bacellar, Federal University of Rio de Janeiro (UFRJ) (Brasil)
  • Aman Arora, The University of Texas at Austin (USA)
  • Luis A. Q. Villon, Federal University of Rio de Janeiro (Brasil)
  • Renan Mendanha, Federal University of Rio de Janeiro (Brasil)
  • Leandro Santiago de Araújo, Universidade Federal Fluminense (Brazil)
  • Diego Leonel Cadette Dutra, Federal University of Rio de Janeiro (Brasil)
  • Priscila Lima, Universidade Federal do Rio de Janeiro (Brazil)
  • Felipe França, Universidade Federal do Rio de Janeiro (Brazil)
  • Igor D. S. Miranda, Federal University of Recôncavo da Bahia (Brazil)
  • Mauricio Breternitz Jr., Instituto Universitario de Lisboa (Portugal)
  • LIZY JOHN, The University of Texas at Austin (United States)

11:11 Classification of preclinical markers in Alzheimer's disease via WiSARD classifier

  • Massimo De Gregorio, CNR (Italy)
  • Alfonso Di Costanzo, Centre for Research and Training in Medicine for Aging Dept. of Medicine and Health Sciences “Vincenzo Tiberio” University of Molise (Italy)
  • Andrea Motta, Istituto di Chimica Biomolecolare – CNR (Italy)
  • Debora Paris, Istituto di Chimica Biomolecolare – CNR (Italy)
  • Antonio Sorgente, Istituto di Scienze Applicate e Sistemi Intelligenti – CNR (Italia)

11:12 A bayesian variational principle for dynamic self organizing maps

  • Anthony Fillion, Neoinstinct (Switzerland)
  • Thibaut Kulak, Neoinstinct (Switzerland)
  • François Blayo, NeoInstinct (Suisse)

11:13 The role of feature selection in personalized recommender systems

  • Roger Bagué-Masanés, Universidade Da Coruña (Spain)
  • Verónica Bolón-Canedo, CITIC, Universidade da Coruña (Spain)
  • Beatriz Remeseiro, University of Oviedo (Spain)

11:14 Adaptive Gabor Filters for Interpretable Color Texture Classification

  • Gerrit Luimstra, University of Groningen (Netherlands)
  • Kerstin Bunte, University of Groningen (Netherlands)

11:15 Coffee break

11:30 Continual Learning beyond classification
Organized by: Timothée Lesort, Alexander Gepperth

11:30 Tutorial - Continual Learning beyond classification

  • Alexander Gepperth, University of Applied Sciences Fulda (Germany)
  • Timothée Lesort, Mila – Quebec Artificial Intelligence Institute (Canada)

11:50 Continual Learning for Human State Monitoring

  • Federico Matteoni, University of Pisa (Italia)
  • Andrea Cossu, University of Pisa (Italy)
  • Claudio Gallicchio, University of Pisa (Italy)
  • Vincenzo Lomonaco, University of Pisa (Italy)
  • Davide Bacciu, University of Pisa (Italy)

12:10 Continual Learning beyond classification - Poster spotlights
Organized by: Timothée Lesort, Alexander Gepperth

12:10 Continual Incremental Language Learning for Neural Machine Translation

  • Michele Resta, University of Pisa (Italy)
  • Davide Bacciu, University of Pisa (Italy)

12:11 Diverse Memory for Experience Replay in Continual Learning

  • Andrii Krutsylo, Institute of Computer Science of the Polish Academy of Sciences (Poland)
  • Pawel Morawiecki, Institute of Computer Science, Polish Academy of Sciences (Poland)

12:12 Lunch

13:45 Classification

13:45 Model Agnostic Local Explanations of Reject

  • André Artelt, CITEC - Bielefeld University (Germany)
  • Roel Visser, CITEC - Bielefeld University (Germany)
  • Barbara Hammer, CITEC - Bielefeld University (Germany)

14:05 Adaptive multi-modal positive semi-definite and indefinite kernel fusion for binary classification

  • Maximilian Münch, University of Applied Sciences Würzburg-Schweinfurt University of Groningen (Germany)
  • Christoph Raab, University of Applied Science Würzburg-Schweinfurt (Germany)
  • Simon Heilig, University of Applied Sciences Würzburg-Schweinfurt (Germany)
  • Manuel Röder, University of Applied Sciences Würzburg-Schweinfurt (Germany)
  • Frank-Michael Schleif, University of Applied Sciences Würzburg-Schweinfurt (Germany)

14:25 Classification - poster spotlights

14:25 A Machine Learning Approach for School Dropout Prediction in Brazil

  • João Gabriel Corrêa Krüger, Pontificia Universidade Católica do Paraná (Brazil)
  • Jean Paul Barddal, Pontifícia Universidade Católica do Paraná (Brazil)
  • Alceu de Souza Britto Jr., Pontificia Universidade Católica do Paraná (Brazil)

14:26 An empirical comparison of generators in replay-based continual learning

  • NADZEYA DZEMIDOVICH, University of Applied Sciences Fulda (Germany)
  • Alexander Gepperth, University of Applied Sciences Fulda (Germany)

14:27 Machine learning for automated quality control in injection moulding manufacturing

  • Steven Michiels, Thomas More University of Applied Sciences (Belgium)
  • Cédric De Schryver, University of Leuven (Belgium)
  • Lynn Houthuys, Thomas More University of Applied Sciences (Belgium)
  • Frederik Vogeler, Thomas More University of Applied Sciences (Belgium)
  • Frederik Desplentere, University of Leuven (Belgium)

14:28 Simple Non Regressive Informed Machine Learning Model for Predictive Maintenance of Railway Critical Assets

  • Luca Oneto, University of Genoa (Italy)
  • Simone Minisi, ZenaByte (Italy)
  • Andrea Garrone, Unige (Italia)
  • Renzo Canepa, Rete Ferroviaria Italiana
  • Carlo Dambra
  • Davide Anguita, DIBRIS - University of Genova (Italy)

14:29 A Kernel Based Multilinear SVD Approach for Multiple Sclerosis Profiles Classification

  • Berardino Barile, KU Leuven Université Claude Bernard Lyon 1 (France)
  • Pooya Ashtari, KU Leuven Université Claude Bernard Lyon 1 Francoise Durand-Dubief, Université Claude Bernard Lyon 1 Hospices Civils de Lyon
  • Frederik Maes, KU Leuven (Belgium)
  • Dominique Sappey-Marinier, Université Claude Bernard Lyon 1 CERMEP Imagerie du Vivant
  • Sabine Van Huffel, KU Leuven

14:30 Price direction prediction in financial markets, using Random Forest and Adaboost

  • Mohammadmahdi Ghahramani, Università di Padova (Italy)
  • Fabio Aiolli, University of Padova (Italy)

14:31 Learning theory and principles

14:31 Multioutput Regression Neural Network Training via Gradient Boosting

  • seyedsaman emami, Universidad Autónoma de Madrid | UAM (Spain)
  • Gonzalo Martínez-Muñoz, Universidad Autónoma de Madrid | UAM (Spain)

14:51 Do We Really Need a New Theory to Understand the Double-Descent?

  • Luca Oneto, University of Genoa (Italy)
  • Sandro Ridella, University of Genoa (Italy)
  • Davide Anguita, DIBRIS - University of Genova (Italy)

15:11 Filtering participants improves generalization in competitions and benchmarks

  • Adrien Pavao, Université Paris-Saclay (France)
  • Isabelle Guyon, Université Paris-Saclay (France)
  • Zhengying Liu, Université Paris-Saclay (France)

15:31 Sliced-Wasserstein normalizing flows: beyond maximum likelihood training

  • Florentin Coeurdoux, INP Toulouse IRIT ENSEEIHT (France)
  • Nicolas Dobigeon, University of Toulouse (France)
  • Pierre Chainais, Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 - Lille, France (France)

15:51 Learning theory and principles - Poster spotlights

15:51 A Fast and Simple Evolution Strategy with Covariance Matrix Estimation

  • Oliver Kramer, University of Oldenburg (Germany)

15:52 Constraint Guided Gradient Descent: Guided Training with Inequality Constraints

  • Quinten Van Baelen, KU Leuven (Belgium)
  • Peter Karsmakers, KU Leuven Campus Geel (Belgium)

15:53 Neural-network-based estimation of normal distributions in black-box optimization

  • Jiří Tumpach, Charles University Faculty of Mathematics and Physics (Czech Republic)
  • Jan Koza, Czech Technical University in Prague Faculty of Information Technology (Czech Reoublic)
  • Martin Holeňa, Institute of Computer Science (ICS) Academy of Sciences of the Czech Republic (Czechia)

15:54 Bayes Point Rule Set Learning

  • Mirko Polato, University of Torino (Italy)
  • Fabio Aiolli, University of Padova (Italy)
  • Luca Bergamin, University of Padova (Italy)
  • Tommaso Carraro, Fondazione Bruno Kessler (Italy)

15:55 Poster exhibition

17:30 End of first day

17:45 Walking visit of Bruges with guides - starting from Novotel hotel

 

Thursday, 06.10.2022

09:00 Deep learning, signal, image

09:00 Hyperspectral Wavelength Analysis with U-Net for Larynx Cancer Detection

  • Felix Meyer-Veit, TU Braunschweig (Germany)
  • Rania Rayyes, TU Braunschweig (Germany)
  • Andreas O. H. Gerstner, ENT-Clinic (Germany)
  • Jochen J. Steil, TU Braunschweig (Germany)

09:20 Lightening CNN architectures by regularization driven weights' pruning

  • Giovanni Bonetta, University of Turin (Italy)
  • Rossella Cancelliere, University of Turin (Italy)

09:40 1D vs 2D convolutional neural networks for scalp high frequency oscillations identification

  • Gaëlle MILON-HARNOIS, LARIS - UCO - Angers - France (France)
  • Nisrine JRAD, Université Catholique de l'Ouest - LARIS (France)
  • Daniel Schang, ESEO (France)
  • Patrick VAN BOGAERT, Centre Hospitalier Universitaire - LARIS (France)
  • Pierre CHAUVET, Université Catholique de l'Ouest - LARIS (France)

10:00 Deep latent position model for node clustering in graphs

  • Dingge Liang, Inria - Universite Cote d'Azur (France)
  • Marco Corneli, Inira - Universite Cote d'Azur
  • Charles Bouveyron, Inira - Universite Cote d'Azur
  • Pierre Latouche, Universite Paris Cite

10:20 Feature Compression Using Dynamic Switches in Multi-split CNNs

  • Suresh Kirthi Kumaraswamy, InterDigital Inc (France)
  • Alexey Ozerov, Ava (France)
  • Ngoc Q. K. Duong, Lacroix Impulse (France)
  • Anne Lambert, InterDigital R&D France (FRANCE)
  • François Schnitzler, InterDigital (France)
  • Patrick Fontaine, InterDigital (France)

10:40 Deep learning, signal, image - Poster spotlights

10:40 Deep learning for Parkinson’s disease symptom detection and severity evaluation using accelerometer signal

  • Tomasz Gutowski, Military University of Technology (Poland)

10:41 Deep networks with ReLU activation functions can be smooth statistical models

  • Joseph Rynkiewicz, SAMM, Université de Paris 1 (France)

10:42 Deep Convolutional Neural Networks with Sequentially Semiseparable Weight Matrices

  • Matthias Kissel, Technical University of Munich (Germany)
  • Klaus Diepold, Technical University of Munich (Germany)

10:43 PCA improves the adversarial robustness of neural networks

  • István Megyeri, University of Szeged (Hungary)
  • Ammar Al-Najjar, University of Szeged (Hungary)

10:44 Battery detection of XRay images using transfer learning

  • Nermeen Abou Baker, Hochschule Ruhr West (Germany)
  • David Rohrschneider, Hochschule Ruhr West (Deutschland)
  • Uwe Handmann, Hochschule Ruhr West (Germany)

10:45 Real-time capable Ensemble Estimation for 2D Object Detection

  • Lukas Enderich, Robert Bosch GmbH (Germany)
  • Simon Heming, Robert Bosch GmbH (Germany)

10:46 Appearance-Context aware Axial Attention for Fashion Landmark Detection

  • Nikhil Kilari, TCS Research (India)
  • Gaurab Bhattacharya, TCS Research (India)
  • Pavan Kumar Reddy K
  • Jayavardhana Gubbi, TCS Research (India)
  • Arpan Pal, Tata Consultancy Services (India)

10:47 ROP inception: signal estimation with quadratic random sketching

  • Remi Delogne, Université catholique de louvain (Belgium)
  • Vincent Schellekens, ICTEAM/UCLouvain (Belgium)
  • Laurent Jacques, ICTEAM/UCLouvain (Belgium)

10:48 Semi-synthetic Data for Automatic Drone Shadow Detection

  • Mohammed El Amine Mokhtari, University of Mons, Belguim (Belgium)
  • Virginie Vandenbulcke
  • Sohaib Laraba, ISIA Lab - UMONS (Belgium)
  • Matei Mancas
  • Elias Ennadifi
  • Mohamed Lamine Tazir
  • Bernard Gosselin, University of Mons (Belgium)

10:49 Coffee break

11:05 Anomaly and change point detection
Organized by: Madalina Olteanu, Fabrice Rossi, Florian Yger

11:05 Challenges in anomaly and change point detection

  • Madalina Olteanu, CEREMADE - Université Paris Dauphine PSL (France)
  • Fabrice Rossi, CEREMADE - Université Paris Dauphine PSL (France)
  • Florian Yger, LAMSADE - Université Paris Dauphine PSL (France)

11:25 Anomaly detections on the oil system of a turbofan engine by a neural autoencoder

  • Jean Coussirou, Safran Aircraft Engines (France)
  • Thomas Vanaret, Safran Aircraft Engines (France)
  • Jérôme Lacaille, Datalab, Safran Aircraft Engines (France)

11:45 Contrasting Explanation of Concept Drift

  • Fabian Hinder, Cognitive Interaction Technology (CITEC), Bielefeld University (Germany)
  • André Artelt, CITEC - Bielefeld University (Germany)
  • Valerie Vaquet, CITEC, Bielefeld University (Germany)
  • Barbara Hammer, Cognitive Interaction Technology (CITEC), Bielefeld University (Germany)

12:05 Anomaly and change point detection - Poster spotlights
Organized by: Madalina Olteanu, Fabrice Rossi, Florian Yger

12:05 Anomaly detection and representation learning in an instrumented railway bridge

  • Yacine Bel-Hadj, Vrije Universiteit Brussels (Belgium)
  • Wout Weijtjens, Vrije Universiteit Brussel (Belgium)
  • Francisco de Nolasco Santos, OWI-Lab, Vrije Universiteit Brussel (Belgium)

12:06 Lunch

13:40 Deep Semantic Segmentation Models in Computer Vision
Organized by: Paolo Andreini, Giovanna Maria Dimitri

13:40 Deep Semantic Segmentation Models in Computer Vision

  • Paolo Andreini, University of Siena (Italy)
  • Giovanna Maria Dimitri, Università degli Studi di Siena (italy)

14:00 A weakly supervised approach to skin lesion segmentation

  • Simone Bonechi, University of Siena (Italy)

14:20 A Deep Learning approach for oocytes segmentation and analysis

  • Paolo Andreini, University of Siena (Italy)
  • Niccolò Pancino, University of Siena (Italy)
  • Filippo Costanti, University of Siena (Italy)
  • Gabriele Eusepi, SILOG Sistemi Logici (Italy)
  • Barbara Toniella Corradini, University of Siena (Italy)

14:40 Deep Learning Approaches for mice glomeruli segmentation

  • Duccio Meconcelli, Università degli studi di Siena (Italia)
  • Simone Bonechi, University of Siena (Italy)
  • Giovanna Maria Dimitri, Università degli Studi di Siena (italy)

15:00 Detection and Localization of GAN Manipulated Multi-spectral Satellite Images

  • Lydia Abady, University of Siena (Italy)
  • Giovanna Maria Dimitri, Università degli Studi di Siena (italy)
  • Mauro Barni, Università degli Studi di Siena (italy)

15:20 Deep Semantic Segmentation in Skin Detection

  • Daniela Cuza, University of Padova (Italy)
  • Andrea Loreggia, University of Brescia (Italia)
  • Alessandra Lumini, University of Bologna (Italia)
  • Loris Nanni, University of Padova (Italia)

15:40 Regression and forecasting - Poster spotlights

15:40 Dynamics-aware Representation Learning via Multivariate Time Series Transformers

  • Michael Potter, US Department of Defense Naval Surface Warfare Center Corona Division (United States)
  • ILKAY YILDIZ POTTER, BIOSENSICS LLC (UNITED STATES)
  • OCTAVIA CAMPS, Northeastern University (UNITED STATES)
  • MARIO SZNAIER, Northeastern University (UNITED STATES)

15:41 Predicting Test Execution Times with Asymmetric Random Forests

  • Francisco Pereira, Universidade Federal do Ceará (Brazil)
  • Helio Silva, Universidade Federal do Ceará (Brazil)
  • João Gomes, Universidade Federal do Ceará (Brazil)
  • Javam Machado, Universidade Federal do Ceará (Brazil)

15:42 Minkowski logarithmic error: A physics-informed neural network approach for wind turbine lifetime assessment

  • Francisco de Nolasco Santos, OWI-Lab, Vrije Universiteit Brussel (Belgium)
  • Pietro D'Antuono, Vrije Universiteit Brussel (Belgium )
  • Nymfa Noppe
  • Wout Weijtjens, Vrije Universiteit Brussel (Belgium)
  • Christof Devriendt

15:43 Wind power forecasting based on bagging extreme learning machine ensemble model

  • Matheus Henrique Dal Molin Ribeiro
  • Sinvaldo Rodrigues Moreno, Pontifical Catholic University of Parana (Brazil)
  • Ramon Gomes da Silva, Pontifical Catholic University of Parana (Brazil)
  • José Henrique Kleinubing Larcher, Pontifical Catholic University of Paraná (Brasil)
  • Cristiane Canton
  • Viviana Cocco Mariani, Pontifical Catholic University of Parana (Brazil)
  • Leandro dos Santos Coelho, Pontifical Catholic University of Parana (Brazil)

15:44 Improving Laplacian Pyramids Regression with Localization in Frequency and Time

  • Neta Rabin, Tel-Aviv University (Israel)
  • Ben Hen, Tel-Aviv University (Israel)
  • Ángela Fernández, Universidad Autónoma de Madrid (Spain)

15:45 Gap filling in air temperature series by matrix completion methods

  • Benoît Loucheur, ICTEAM, UCLouvain (Belgium)
  • Pierre-Antoine Absil, UCLouvain (Belgium)
  • Michel Journée, IRM (Belgium)

15:46 Poster exhibition

17:30 End of second day

18:45 Brewery visit "De Halve Maan"

19:30 Conference dinner "De Halve Maan"

 

Friday, 07.10.2022

09:00 Recurrent learning and reservoir computing

09:00 Orthogonality in Additive Echo State Networks

  • Andrea Ceni, University of Pisa (Italy)
  • Claudio Gallicchio, University of Pisa (Italy)

09:20 Towards Better Transition Modeling in Recurrent Neural Networks: the Case of Sign Language Tokenization

  • Pierre Poitier, University of Namur (Belgium)
  • Jérôme Fink, University of Namur (Belgium)
  • Benoit Frénay, Université de Namur (Belgium)

09:40 Federated Adaptation of Reservoirs via Intrinsic Plasticity

  • Valerio De Caro, University of Pisa (Italy)
  • Claudio Gallicchio, University of Pisa (Italy)
  • Davide Bacciu, University of Pisa (Italy)

10:00 Recurrent Restricted Kernel Machines for Time-series Forecasting

  • Arun Pandey, KU Leuven (Belgium)
  • Hannes De Meulemeester, KU Leuven (Belgium)
  • Henri De Plaen, KU Leuven (Belgium)
  • Bart De Moor, KU Leuven (Belgium)
  • Johan Suykens, KU Leuven (Belgium)

10:20 Recurrent learning and reservoir computing - Poster spotlights

10:20 Input Routed Echo State Networks

  • Luca Argentieri, University of Pisa (Italia)
  • Claudio Gallicchio, University of Pisa (Italy)
  • Alessio Micheli, Università di Pisa (Italy)

10:21 Natural language processing, and recommender systems - Poster spotlights

10:21 Attention-based Ingredient Phrase Parser

  • Zhengxiang Shi, University College London (United Kingdom)
  • Pin Ni, University College London (United Kingdom)
  • Meihui Wang, University College London (United Kingdom)
  • To Eun Kim, University College London (United Kingdom)
  • Aldo Lipani, UCL (United Kingdom)

10:22 Neural Architecture Search for Sentence Classification with BERT

  • Philip Kenneweg, University of Bielefeld (Germany)
  • Sarah Schröder, University of Bielefeld (Germany)
  • Barbara Hammer, CITEC - Bielefeld University (Germany)

10:23 High Accuracy and Low Regret for User-Cold-Start Using Latent Bandits

  • David Young, Trinity College Dublin (Ireland)
  • Douglas Leith, Trinity College Dublin

10:24 Coffee break

10:40 Machine Learning and Information Theoretic Methods for Molecular Biology and Medicine
Organized by: Jonas Almeida, John Lee, Thomas Villmann, Susana Vinga

10:40 Tutorial - Machine Learning and Information Theoretic Methods for Molecular Biology and Medicine

  • Thomas Villmann, University of Applied Sciences Mittweida, Saxon Institute for Computational Intelligence and Machine Learning (Deutschland)
  • Jonas Almeida, National Cancer Institute (USA)
  • John Lee, UCLouvain (Belgium)
  • Susana Vinga, Instituto Superior Técnico, Universidade de Lisboa (Portugal)

11:00 Interactive dual projections for gene expression analysis

  • Ignacio Diaz-Blanco, University of Oviedo (SPAIN)
  • Jose M. Enguita-Gonzalez, University of Oviedo (SPAIN)
  • Diego Garcia-Perez, University of Oviedo (SPAIN)
  • Ana Gonzalez-Muñiz, University of Oviedo (SPAIN)
  • Abel A. Cuadrado-Vega, University of Oviedo (SPAIN)
  • Maria Dolores Chiara-Romero, Institute of Sanitary Research of the Principado de Asturias (SPAIN)
  • Nuria Valdes-Gallego, Hospital Universitario de Cabueñes (SPAIN)

11:20 Efficient classification learning of biochemical structured data by means of relevance weighting for sensoric response features

  • Katrin Sophie Bohnsack, University of Applied Sciences Mittweida (Germany)
  • Marika Kaden, University of Applied Sciences Mittweida, Saxony Institute for Computational Intelligence and Machine Learning (Germany)
  • Julius Voigt, HS Mittweida (Germany)
  • Thomas Villmann, University of Applied Sciences Mittweida, Saxon Institute for Computational Intelligence and Machine Learning (Deutschland)

11:40 Machine Learning and Information Theoretic Methods for Molecular Biology and Medicine - Poster spotlights
Organized by: Jonas Almeida, John Lee, Thomas Villmann, Susana Vinga

11:40 Interactive visual analytics for medical data: application to COVID-19 clinical information during the first wave

  • Ignacio Diaz-Blanco, University of Oviedo (SPAIN)
  • Jose M. Enguita-Gonzalez, University of Oviedo (SPAIN)
  • Diego Garcia-Perez, University of Oviedo (SPAIN)
  • Maria Dolores Chiara-Romero, Institute of Sanitary Research of the Principado de Asturias (SPAIN)
  • Nuria Valdes-Gallego, Hospital Universitario de Cabueñes (SPAIN)
  • Ana Gonzalez-Muñiz, University of Oviedo (SPAIN)
  • Abel A. Cuadrado-Vega, University of Oviedo (SPAIN)

11:41 Improving Intensive Care Chest X-Ray Classification by Transfer Learning and Automatic Label Generation

  • Helen Schneider, Fraunhofer IAIS (Germany)
  • David Biesner, Fraunhofer IAIS (Germany)
  • Sebastian Nowak, University Hospital Bonn
  • Yannik Layer, University Hospital Bonn
  • Maike Theis, University Hospital Bonn (Germany)
  • Wolfgang Block, Departments of Diagnostic and Interventional Radiology, of Radiotherapy and Radiation Oncology, and of Neuroradiology, University Hospital Bonn, (Germany)
  • Benjamin Wulff, Fraunhofer IAIS
  • Alois M. Sprinkart, UK Bonn (Germany)
  • Ulrike I. Attenberger, University Hospital Bonn
  • Rafet Sifa, Fraunhofer IAIS & Fraunhofer Center for Machine Learning (Deutschland)

11:42 Concept drift

11:42 Federated learning vector quantization for dealing with drift between nodes

  • Johannes Brinkrolf, CITEC - Cognitive Interaction Technology Bielefeld University (Germany)
  • Valerie Vaquet, CITEC, Bielefeld University (Germany)
  • Fabian Hinder, Cognitive Interaction Technology (CITEC), Bielefeld University (Germany)
  • Patrick Menz, Fraunhofer Institute of Factory Operation and Automation (IFF) (Germany)
  • Udo Seiffert, COMPOLYTICS GmbH (Germany)
  • Barbara Hammer, CITEC - Bielefeld University (Germany)

12:02 Concept drift - Poster spotlights

12:02 From hyperspectral to multispectral sensing – from simulation to reality: A comprehensive approach for calibration model transfer

  • Patrick Menz, Fraunhofer Institute of Factory Operation and Automation (IFF) (Germany)
  • Valerie Vaquet, CITEC, Bielefeld University (Germany)
  • Barbara Hammer, CITEC - Bielefeld University (Germany)
  • Udo Seiffert, COMPOLYTICS GmbH (Germany)

12:03 Data stream generation through real concept's interpolation

  • Joanna Komorniczak, Wrocław University of Science and Technology (Poland)
  • Pawel Ksieniewicz, Wrocław University of Science and Technology (Poland)

12:04 Lunch

13:35 Deep Learning for Graphs
Organized by: Luca Pasa, Nicolò Navarin, Daniele Zambon, Davide Bacciu, Federico Errica

13:35 Deep Learning for Graphs

  • Davide Bacciu, Università di Pisa (Italy)
  • Federico Errica, NEC Laboratories Europe GmbH (Germany)
  • Nicolò Navarin, University of Padua (Italy)
  • Luca Pasa, University of Padova, Italy (Italy)
  • Daniele Zambon, The Swiss AI Lab IDSIA (Switzerland)

13:55 Beyond Homophily with Graph Echo State Networks

  • Domenico Tortorella, University of Pisa (Italy)
  • Alessio Micheli, Università di Pisa (Italy)

14:15 Biased Edge Dropout in NIFTY for Fair Graph Representation Learning

  • Federico Caldart, UNIPD (Italia)
  • Luca Pasa, University of Padova, Italy (Italy)
  • Luca Oneto, University of Genoa (Italy)
  • Alessandro Sperduti, University of Padua (Italy)
  • Nicolò Navarin, University of Padua (Italy)

14:35 Deep Learning for Graphs - Poster spotlights
Organized by: Luca Pasa, Nicolò Navarin, Daniele Zambon, Davide Bacciu, Federico Errica

14:35 Embedding-based next song recommendation for playlists

  • Raphaël Romero, IDLAB - Ghent University (Belgium)
  • Tijl De Bie, IDLAB - Ghent University (Belgium)

14:36 Graph Neural Networks for Propositional Model Counting

  • Gaia Saveri, University of Pisa (Italy )

14:37 Revisiting Edge Pooling in Graph Neural Networks

  • Francesco Landolfi, Università di Pisa (Italy)

14:38 Reinforcement learning

14:38 Size Scaling in Self-Play Reinforcement Learning

  • Oren Neumann, ITP Goethe University Frankfurt am Main (Germany)
  • Claudius Gros, Goethe University Frankfurt am Main, Institute for Theoretical Physics (Germany)

14:58 Improving Zorro Explanations for Sparse Observations with Dense Proxy Data

  • Andreas Mazur, Bielefeld University - Faculty of Technology (Germany)
  • André Artelt, CITEC - Bielefeld University (Germany)
  • Barbara Hammer, CITEC - Bielefeld University (Germany)

15:18 Reinforcement learning - Poster spotlights

15:18 Developmental Modular Reinforcement Learning

  • Jianyong Xue, Inria Bordeaux Sud-Ouest, Talence, France; LaBRI, Universite de Bordeaux, Bordeaux INP, CNRS, UMR 5800, Talence, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France (France)
  • Frédéric Alexandre, Inria Bordeaux Sud-Ouest, Talence, France; LaBRI, Universite de Bordeaux, Bordeaux INP, CNRS, UMR 5800, Talence, France; Institut des Maladies Neurodégénératives, CNRS, UMR 5293, Bordeaux, France (France)

15:19 Reinforcement learning for constructing low density sign representations of Boolean functions

  • Oytun Yapar, Ozyegin University (Türkiye)
  • Erhan Oztop, Ozyegin University, Osaka University (Japan)

15:20 Adaptive Behavior Cloning Regularization for Stable Offline-to-Online Reinforcement Learning

  • Yi Zhao, Aalto University (Finland)
  • Rinu Boney, Aalto Univerisity (Finland)
  • Alexander Ilin, Aalto University (Finland)
  • Juho Kannala, Aalto University (Finland)
  • Joni Pajarinen, Aalto University (Finland)

15:21 Poster exhibition

17:00 End of conference

 

Copyright © ESANN, 2019