• Log In
ESANN 2025
  • Home
      • Latest news
  • Submit a paper
      • Call for papers
      • Special sessions
      • Author guidelines
      • Ethics
      • Submissions
  • Program
  • Participate
      • Format of the conference
      • Registration
      • Information for speakers
  • The event
      • Venue
      • About Bruges
      • Hotels
      • Conference commitees
      • Sponsors
      • Contacts
  • Past ESANN
      • ESANN conferences
      • Proceedings
  • My ESANN
close× Call Us +1 (777) 123 45 67
close×

ESANN 1999 programme

  Wednesday 21st April 1999
8H30 Registration
9H00 Opening
  Session 1: Dynamical systems
9H00 Synchronizing chaotic neuromodules
F. Pasemann, Max-Planck Inst. (Germany)
9H20 Mean-field equations reveal synchronization in a 2-populations neural network model
E. Daucé, O. Moynot, O. Pinaud, M. Samuelides, ONERA Toulouse, B. Doyon, CHU Purpan (France)
  Session 2: Self-organization
9H40 A hierarchical self-organizing feature map for analysis of not well separable clusters of different feature density
S. Schünemann, B. Michaelis, Univ. Magdeburg (Germany)
10H00 Using the Kohonen algorithm for quick initialization of Simple Competitive Learning algorithm
E. de Bodt1,2, M. Cottrell3, M. Verleysen1, 1Univ. Cat. Louvain (Belgium), 2Univ. Lille 2, 3Univ. Paris 1 (France)
10H20 Coffee break
  Special session 3: Adaptive computation of data structures
Organised by: Marco Gori, Univ. di Siena (Italy)
10H40 Learning in structured domains
M. Gori, Univ. di Siena (Italy)
11H00 Approximation capabilities of folding networks
B. Hammer, Univ. of Osnabrück (Germany)
11H20 Tree-recursive computation of gradient information for structures
A. Kuechler, Univ. of Ulm (Germany)
11H40 Learning search-control heuristics for automated deduction systems with folding architecture networks
C. Goller, TU Univ. of Munich (Germany)
12H00 A topological transformation for hidden recursive models
F. Costa, P. Frasconi, G. Soda, Univ. of. Florence (Italy)
12H20 Lunch
  Session 4: Methodology
14H00 The application of neural networks to the paper-making industry
P.J. Edwards, A. F. Murray, G. Papadopoulos, A.R. Wallace, Edinburgh Univ., J. Barnard, Tullis Russell (Scotland)
14H20 Marble slabs quality classification system using texture recognition and neural networks methodology
J. Martinez-Cabeza de Vaca Alajarin, L.-M. Tomas Balibrea, Univ. de Murcia (Spain)
14H40 Visual-based posture recognition using hybrid neural networks
A. Corradini, H.-J. Boehme, H.-M. Gross, Tech. Univ. of Ilmenau (Germany)
15H00 Model clustering by deterministic annealing
B. Bakker, T. Heskes, Univ. of Nijmegen (Netherlands)
15H20 Coffee break
  Special session 5: Remote sensing spectral image analysis
Organised by: Erzsebet Merenyi, Univ. of Arizona (USA)
15H40 The challenges in spectral image analysis: an introduction, and review of ANN approaches
E. Merenyi, Univ. of Arizona (USA)
16H00 A simple associative neural network for producing spatially homogenous spectral abundance interpretations of hyperspectral imagery
N. Pendock, Univ. of the Witwatersrand (South Africa)
16H20 Estimating the intrinsic dimensionality of hyperspectral images
J. Bruske, Christian-Albrechts-Univ. Kiel (Germany), E. Merenyi, Univ. of Arizona (USA)
16H40 Benefits and limits of the self-organizing map and its variants in the area of satellite remote sensoring processing
T. Villmann, Univ. Leipzig (Germany)
  Poster session: spotlights
17H00 Comparison of Kohonen, scale-invariant and GTM self-organising maps for interpretation of spectral data
D. MacDonald, S. McGlinchey, J. Kawala, C. Fyfe, Univ. of Paisley (UK)
17H02 Neural learning of approximate simple regular languages
M. Forcada, A. Corbi, Univ. d’Alacant (Spain), M. Gori, M. Maggini, Univ. di Siena (Italy)
17H04 A benchmark for testing adaptive systems on structured data
M. Hagenbuchner, A.C. Tsoi, Univ. of Wollongong (Australia)
17H06 AdaBoost and neural networks
T. Windeatt, R. Ghaderi, Univ. of Surrey (UK)
17H08 Modeling face recognition learning in early infant development
F. Acerra, Y. Burnod, Univ. Paris 6, S. de Schonen, Univ. Paris 5 (France)
17H10 The NeuralBAG algorithm: optimizing generalization performance in bagged neural networks
J. Carney, P. Cunningham, Univ. of Dublin (Ireland)
17H12 Neuro-wavelet parametric characterization of hardness profiles
V. Colla1, L. Reyneri2, M. Sgarbi1, 1Scuola Sup. Sant’Anna, 2Polit. di Torino (Italy)
17H14 Heterogeneity enhanced order in a chaotic neural network
S. Mizutani, K. Shimohara, NTT Communic. Science Lab. (Japan)
17H16 Tackling the stability/plasticity dilemma with double loop dynamic systems
C. Lecerf, Univ. Paris 8 (France)
17H18 Poster preview
   
  Thursday 22nd April 1999
  Session 6: Biological models and inspiration
9H00 Regularization in oculomotor adaptation
J. Bullinaria, P. Riddell, S. Rushton, Univ. of Reading (UK)
9H20 Recurrent V1-V2 interaction for early visual information processing
H. Neumann, W. Sepp, Univ. Ulm (Germany)
9H40 Neural field description of state-dependent receptive field changes in the visual cortex
K. Suder, F. Wörgötter, Ruhr-Univ. Bochum, T. Wennekers, Univ. of Ulm (Germany)
10H00 Coffee break
  Special session 7: Support Vector Machines
Organised by: S. Canu, INSA Rouen, PSI (France), Bernhard Schoelkopf, GMD FIRST Berlin (Germany)
10H20 Introduction to Support Vector Machines
S. Canu, INSA Rouen, PSI (France)
10H50 Integrating the evidence framework and the support vector machine
J. Kwok, Hong Kong Baptist Univ. (Hong Kong)
11H10 Support vector classifier with asymetric kernel function
K. Tsuda, Electrotechnical laboratory (Japan)
11H30 A multiplicative updating algorithm for training support vector machine
N. Cristianini, C. Campbell, Univ. of Bristol, J. Shawe-Taylor, Royal Holloway College (UK)
11H50 Face identification using support vector machines
R. Fernandez, E. Viennet, Univ. Paris 13 (France)
  Poster session: spotlights
12H10 Dimension reduction by local processing
C. Wöhler, U. Kressel, J. Schürmann, DaimlerChrysler Res. & Tech., J. Anlauf, Rheinische Friedrich-Wilhelms-Univ. Bonn (Germany)
12H12 A kernel based adaline
T. Friess, R. Harrison, Univ. of Sheffield (UK)
12H14 Data domain description using support vectors
D. Tax, R. Duin, Delft Univ. of Tech. (Netherlands)
12H16 Support vector machines vs multi-layer perceptrons in particle identification
N. Barabino1, M. Pallavicini2, A. Petrolini1,2, M. Pontil1, 3, A. Verri1,3, 1Univ. di Genova, 2Sezione di Genova (Italy), 3MIT (USA)
12H18 Specialization with cortical models: An application to causality learning
H. Frezza-Buet, F. Alexandre, LORIA (France)
12H20 Generalisation capabilities of a distributed neural classifier
A. Ribert, A. Ennaji, Y. Lecourtier, Univ. de Rouen (France)
12H22 A comparison of three PCA neural techniques
S. Fiori, F. Piazza, Univ. of Ancona (Italy)
12H24 Neural networks which identify composite factors
D. MacDonald, D. Charles, C. Fyfe, Univ. of Paisley (Scotland)
12H26 Supervised Art-II: a new neural network architecture, with quicker learning algorithm, for learning and classifying multivaled input patterns
K. R. Al-Rawi, C. Gonzalo, A. Arquero, Univ. Polit. de Madrid (Spain)
12H28 Poster preview
13H00 Lunch
  Special session 8: Support Vector Machines (cont.)
14H00 Statistical mechanics of support vector machine
A Buhot, M. Gordon, CEA-Grenoble (France)
14H20 An efficient formulation of sparsity controlled support vector regression
P. Drezet, R. Harrison, Univ. of Sheffield (UK)
14H40 Generalized support vector machines
D. Mattera, F. Palmieri, Univ. di Napoli Federico II (Italy), S. Haykin, McMaster Univ. (Canada)
15H00 Support vector machines for multi-class pattern recognition
J. Weston, C. Watkins, Univ. of London (UK)
15H20 From regression to classification in support vector machines
M. Pontil, R. Rifkin, T. Evgeniou, M.I.T. (USA)
15H40 From first order logic to Nd: a data driven reformulation
M. Sebag, Ecole Polytechnique (France)
16H00 Coffee break
  Session 9: Classification
16H20 Feature binding and relaxation labeling with the competitive layer model
H. Wersing, H. Ritter, Univ. of Bielefeld (Germany)
16H40 Segmentation-free detection of overtaking vehicles with a two-stage time-delay neural network classifier
C. Wöhler, J. Schürmann, DaimlerChrysler R&D, J. Anlauf, Rheinische Friedrich-Wilhelms-Univ. (Germany)
17H00 An integer recurrent artificial neural network for classifying feature vectors
R. K. Brouwer, Univ. College of the Cariboo (Canada)
17H20 Feature selection for ANNs using genetic algorithms in condition monitoring
L. Jack, A. Nandi, Univ. of Liverpool (UK)
20H00 Conference dinner
   
  Friday 23rd April 1999
 

Special session 10: Information extraction using unsupervised neural networks
Organised by: Colin Fyfe, University of Paisley (UK)

9H00 Trends in Unsupervised Learning
C. Fyfe, Univ. of Paisley (UK)
9H20 Detection of two Gaussian clusters
A. Buhot, M. Gordon, CEA-Grenoble (France)
9H40 Independent component analysis for mixture densities
F. Palmieri, A. Budillon, D. Mattera, Univ. di Napoli "Federico II" (Italy)
10H00 Extraction of intrinsic dimension using CCA - Application to blind sources separation
N. Donckers, A. Lendasse, V. Wertz, M. Verleysen, Univ. catholique de Louvain (Belgium)
10H20 Noise to extract independent causes
D. Charles, C. Fyfe, Univ. of Paisley (UK)
10H40 Coffee break
  Session 11: ANN models and learning
11H00 Orthogonal least square algorithm applied to the initialization of multi-layer perceptrons
V. Colla1, L. Reyneri2, M. Sgarbi1, 1Scuola Sup. Sant’Anna, 2Polit. di Torino (Italy)
11H20 Maximisation of stability ranges for recurrent neural networks subject to on-line adaptation
J. Steil, H. Ritter, Univ. of Bielefeld (Germany)
11H40 Encoding of sequential translators in discrete-time recurrent neural nets
R.P. Neco, Univ. Miguel Hernandez, M.L. Forcada, R.C. Carrasco, M.A. Valdez-Munoz, Univ. d’Alacant (Spain)
  Poster session: spotlights
12H00 Information retrieval systems using an associative conceptual space
J. van den Berg, Erasmus Univ. Rotterdam, M. Schuemie, Delft Univ. of Technology (The Netherlands)
12H02 Taking inspiration from the Hippocampus can help solving robotics problems
A. Revel, P. Gaussier, J.P. Banquet, Univ. Cergy-Pontoise (France)
12H04 On the invertibility of the RBF model in a predictive control strategy
A. Fache, O. Dubois, A. Billat, Univ. de Reims Champagne-Ardenne (France)
12H06 Nonlinear factorization in sparsely encoded Hopfield-like neural networks
A.M. Sirota, Moscow inst. of Physics and Tech., A.A. Frolov, RAS (Russia), D. Husek, Acad. Sciences (Czech Rep.)
12H08 Storage capacity and dynamics of nonmonotonic networks
B. Crespi, IRST, I. Lazzizzera, Univ. of Trento (Italy)
12H10 A general approach to construct RBF net-based classifier
F. Belloir, A. Fache, A. Billat, Univ. de Reims Champagne-Ardenne (France)
12H12 Hidden Markov gating for prediction of change points in switching dynamical systems
S. Liehr, K. Pawelzik, Univ. of Bremen, J. Kohlmorgen, S. Lemm, K.-R. Müller, GMD FIRST (Germany)
12H14 Critical and non-critical avalanche behavior in networks of integrate-and-fire neurons
C. Eurich, T. Conradi, H. Schwegler, Univ. of Bremen (Germany)
12H16 Poster preview
13H00 Lunch
  Special session 12: Spiking neurons
Organised by: Wulfram Gerstner, E.P.F. Lausanne (Switzerland)
14H15 Introduction to spiking neurons
W. Gerstner, E.P.F. Lausanne (Switzerland)
14H35 Fast analog computation in networks of spiking neurons using unreliable synapses
T. Natschläger, W. Maass, Tech. Univ. Graz (Austria)
14H55 Learning a temporal code
P. Häfliger, E.T.H. Zürich (Switzerland)
15H15 VC dimension bounds for networks of spiking neurons
M. Schmitt, Ruhr-Univ. Bochum (Germany)
15H35 What does a neuron talk about ?
S. Wilke, C.Eurich, Univ. of Bremen (Germany)
15H55 Coffee break
  Session 13: Temporal series
16H15 Development of a French speech recognizer using a hybrid HMM/MLP system
J.-M. Boite, C. Ris, Fac. Polyt. Mons (Belgium)
16H45 A hybrid system for fraud detection in mobile communications
Y. Moreau, E. Lerouge, H. Verrelst, J. Vandewalle, K.U. Leuven (Belgium), C. Störmann, Siemens Corp. Res. (Germany), P. Burge, Univ. of London (UK)
16H55 Hybrid HMM/MLP models for times series prediction
J. Rynkiewicz, Univ. Paris 1 (France)
Copyright © ESANN, 2019